Fructose in Insulin Resistance-Focused on Diabetes

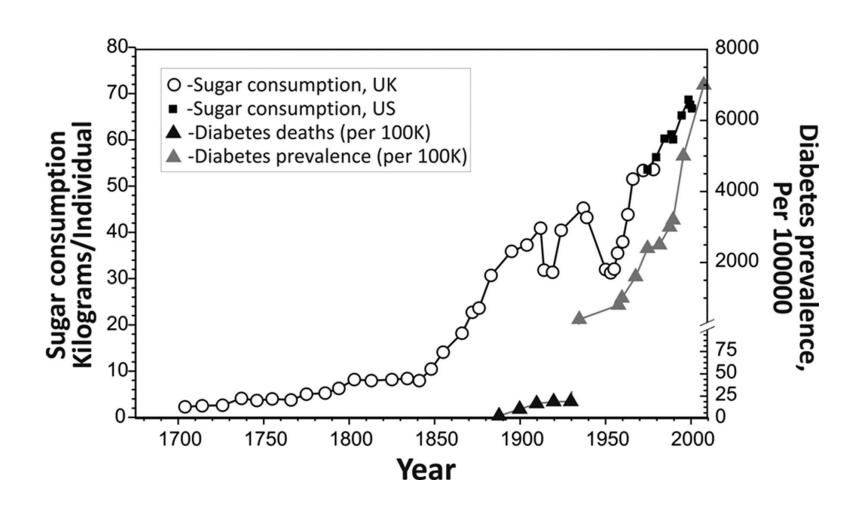
순천향대학교 부천병원 내분비내과 정 찬희

Introduction

Unique characteristics of Fructose Metabolism

Mechanism for Fructose-Induced Insulin Resistance

Epidemiological Studies


: Fructose intake and Type 2 diabetes

Summary

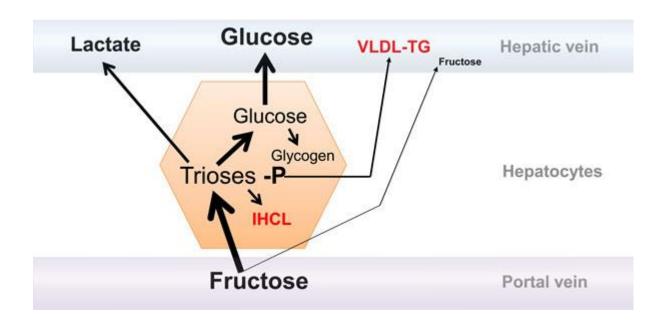
Fructose

- While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet.
- Old hypothesis
 - Excessive intake of sugar, and in particular fructose, may be an important cause of T2DM.
 - =by Frederick Allen (1910년대)
 - =In 1960s, Campbell and Yudkin resurrected
 - =after, largely been eschewed
 - Restriction of sugar had not been recommended as a means to prevent diabetes by the ADA before

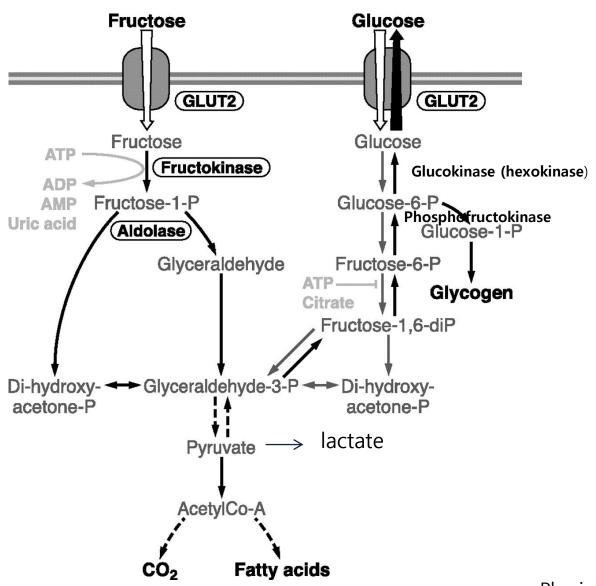
Parallel epidemic of diabetes and sugar consumption

Introduction

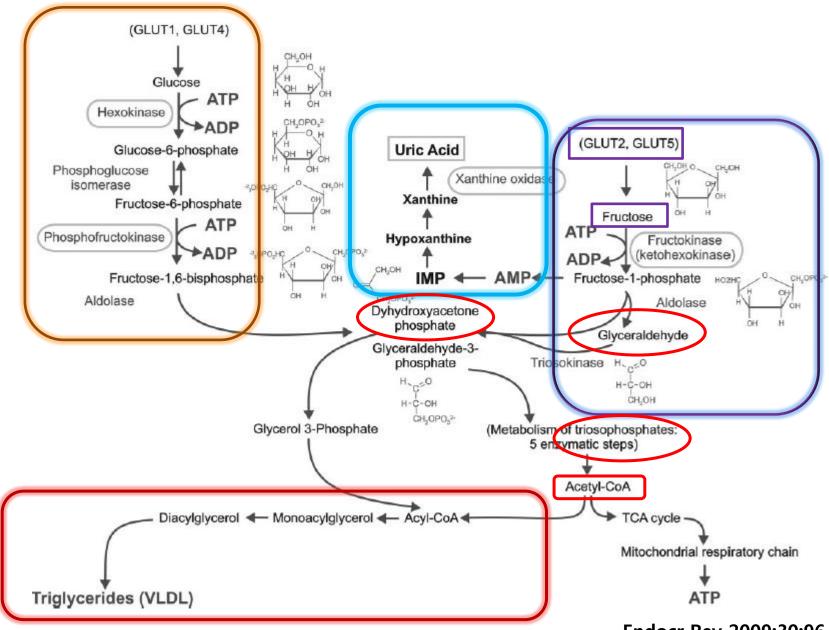
Unique characteristics of Fructose Metabolism


Mechanism for Fructose-Induced Insulin Resistance

Epidemiological Studies


: Fructose intake and Type 2 diabetes

Conclusions


Metabolism of fructose in the liver

Metabolism of fructose in the liver

Unique characteristics of Fructose metabolism

Endocr Rev 2009:30:96

Fructose differs from glucose in metabolism

- Different transporters and enzymes involved in its metabolism
- Positive feedback system in which fructose up-regulates its transporter as well as fructokinase
- Highly lipogenic
- Stimulate uric acid production
- Does not signal insulin release or require insulin: catalytic concept

Introduction

Unique characteristics of Fructose Metabolism

Mechanism for Fructose-Induced Insulin Resistance

Epidemiological Studies

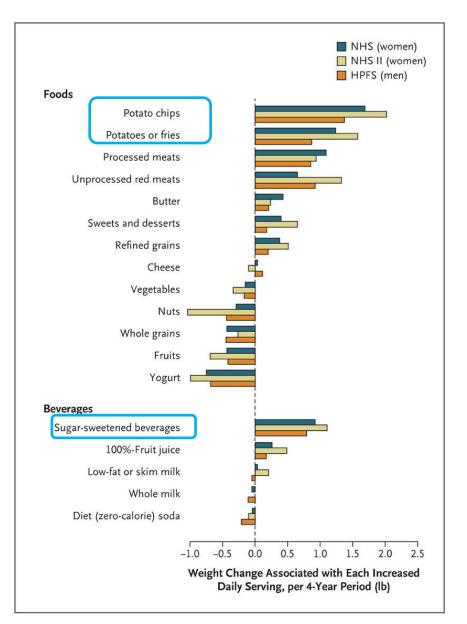
: Fructose intake and Type 2 diabetes

Conclusions

Fructose-Induced Insulin Resistance

- Classic obesity-associated mechanisms
 Fructose ingestion and satiety responses
- Independent of weight gain or differences in energy intake

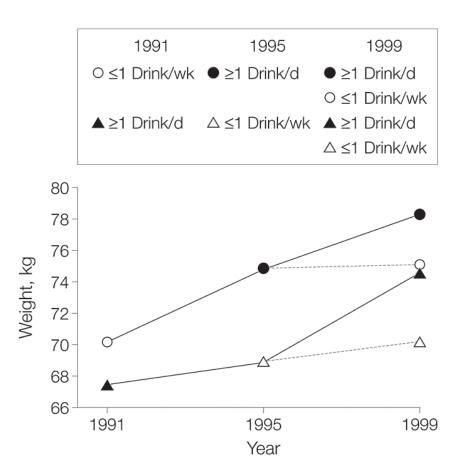
Fructose-induced dyslipidemia


Fructose-induced hyperuricemia

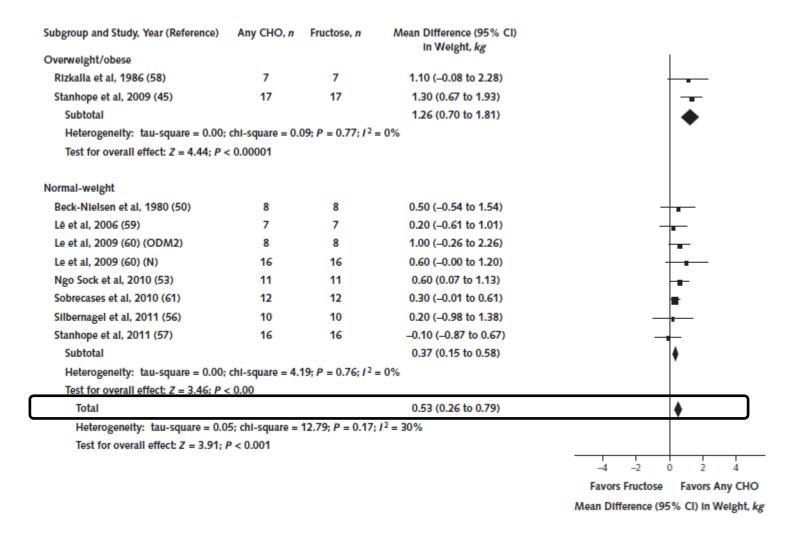
Fructose-induced inflammation

Fructose-induced leptin resistance

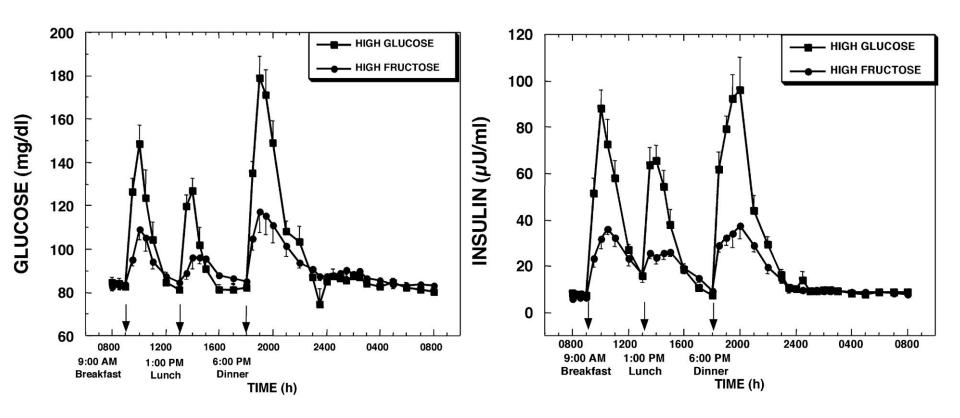
Role of the gut in mediating the fructose response : endotoxin


Changes in diet and lifestyle and long-term weight gain in women and men

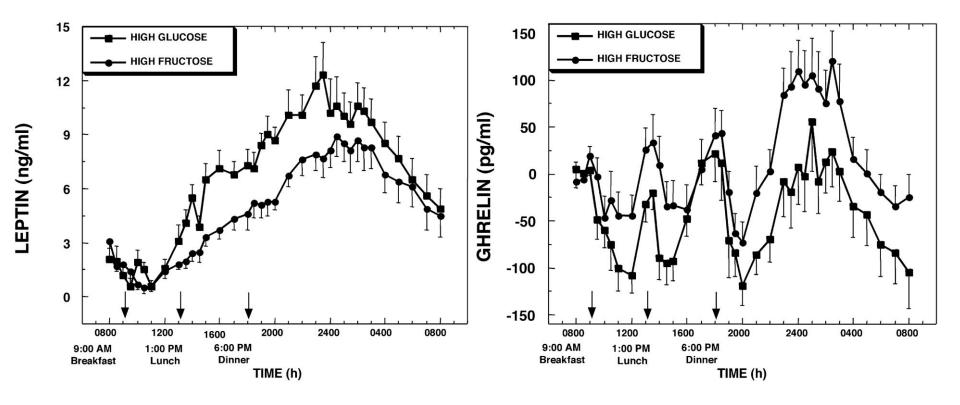
N=120,877, 1986 to 2006


NEJM 2011;364:2392

Sugar-Sweetened Beverages and weight gain

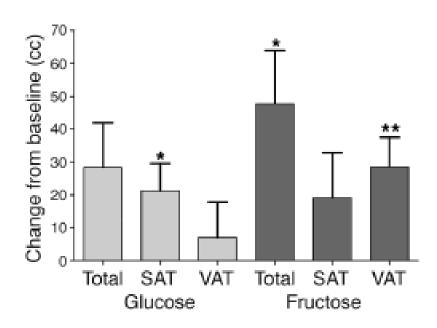

Mean weight in 1991, 1995, and 1999 according to trends in sugarsweetened soft drink consumption in 1969 women who changed consumption from 1991 to 1995 and either changed or maintained level of consumption until 1999 : Nurses Health Study II

Effect of fructose on body weight in controlled feeding trials



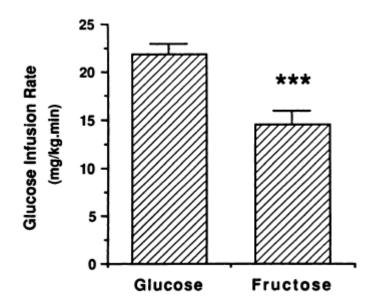
Fructose ingestion and Satiety Responses

Plasma glucose and insulin concentrations during a 24-h period in 12 women consuming HGI or HFr beverages with each meal.

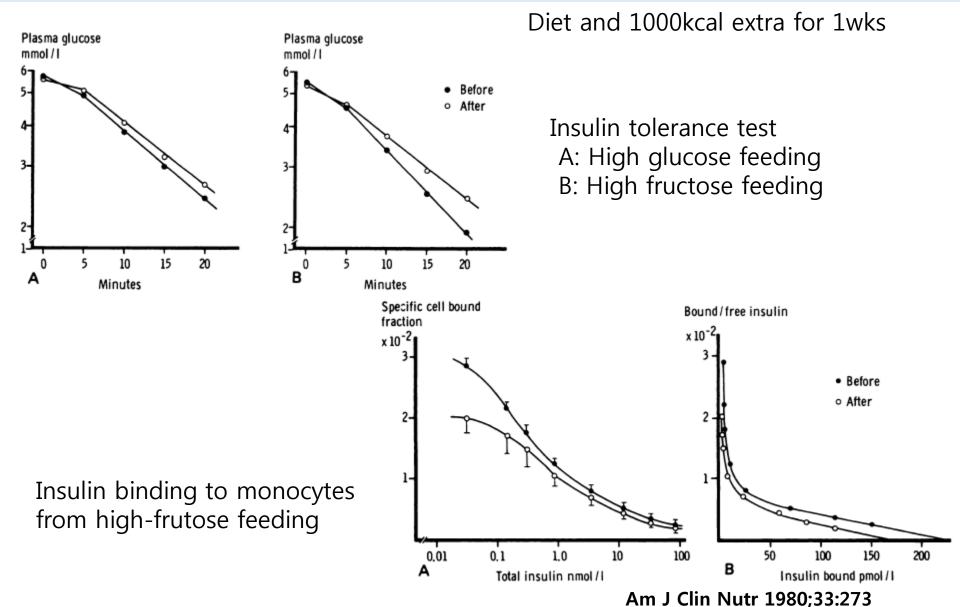


Change of plasma leptin and ghrelin concentrations in 12 women consuming HGI or HFr beverages with each meal.

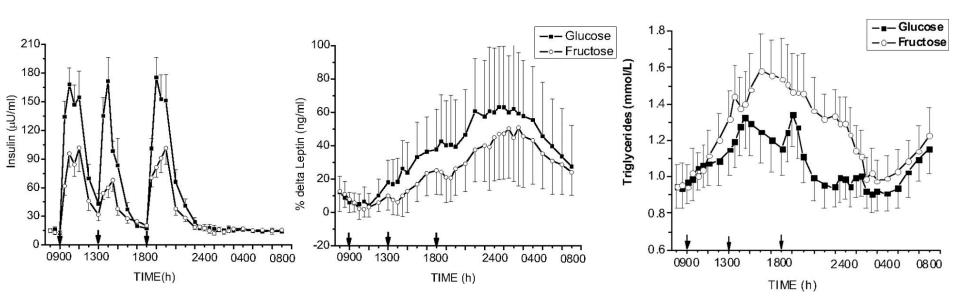
Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight /obese humans


Beverages providing 25% of energy requirements for 10 weeks

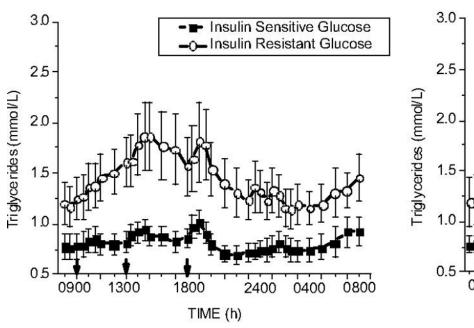
Fructose-Induced Insulin Resistance

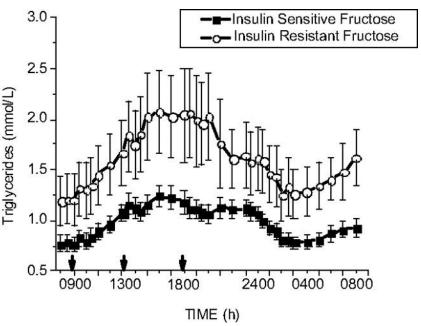

- Classic obesity-associated mechanisms
 Fructose ingestion and satiety responses
- Independent of weight gain or differences in energy intake
 - Fructose-induced dyslipidemia
 - Fructose-induced hyperuricemia
 - Fructose-induced inflammation, oxidative stress
 - Fructose-induced leptin resistance
 - Role of the gut in mediating the fructose response : endotoxin

Fructose-induced in vivo insulin resistance in rats

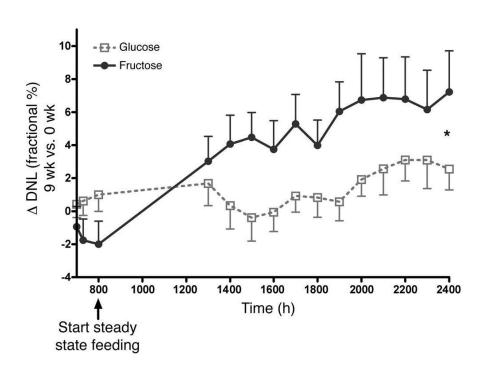

Insulin action was assessed by using the hyperinsulinemic clamp in rats fed equal amounts of glucose or fructose (35% of calories) for 4 wks

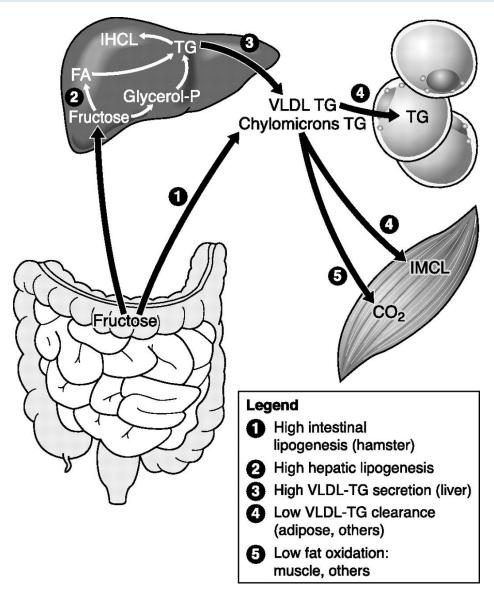
Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects


Influence of Insulin resistance on plasma Triglyceride responses

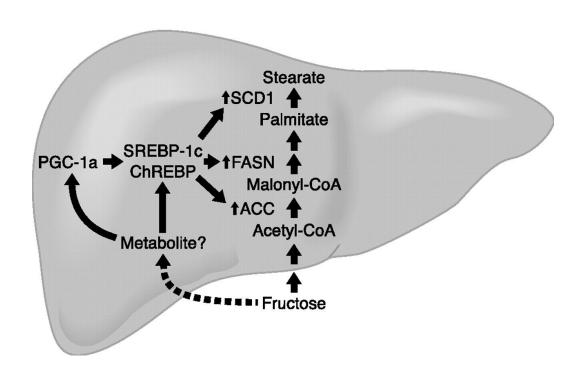

consuming Fructose-and Glucose-Sweetened Beverages with meals in obese men and women (n=17, 30% of total calories)

Influence of Insulin resistance on plasma Triglyceride responses


TG responses to consumption of glucose-sweetened and fructose-sweetened beverages with meals in insulin-sensitive (n = 10) and insulin-resistant obese subjects (n = 7).

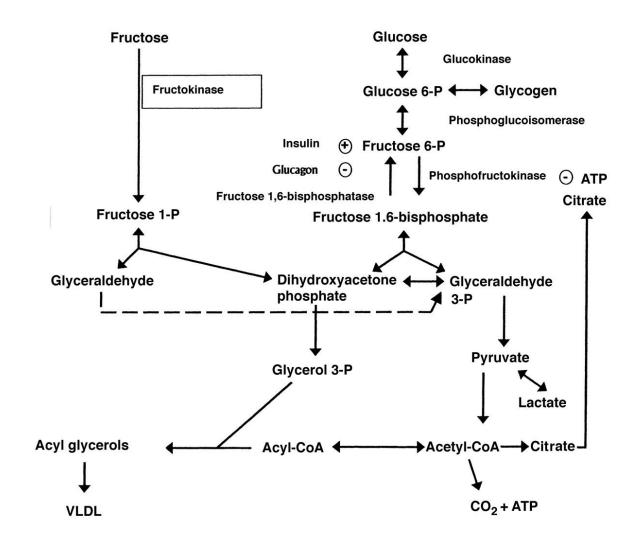

Consuming fructose-sweetened, not glucose-sweetened, beverages increases lipids in overweight /obese humans

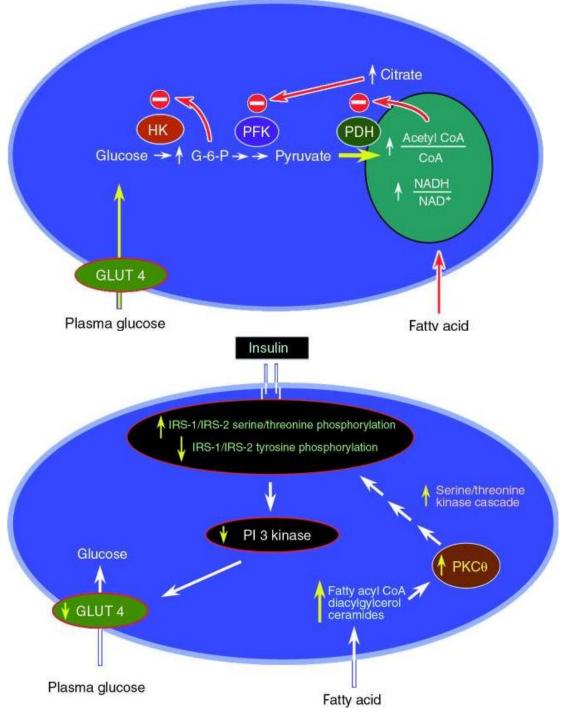
Beverages providing 25% of energy requirements for 10 weeks



Possible mechanisms involved in fructose-induced dyslipidemia

Tappy L, and Lê K Physiol Rev 2010;90:23-46


Mechanisms for fructose-induced de novo lipogenesis

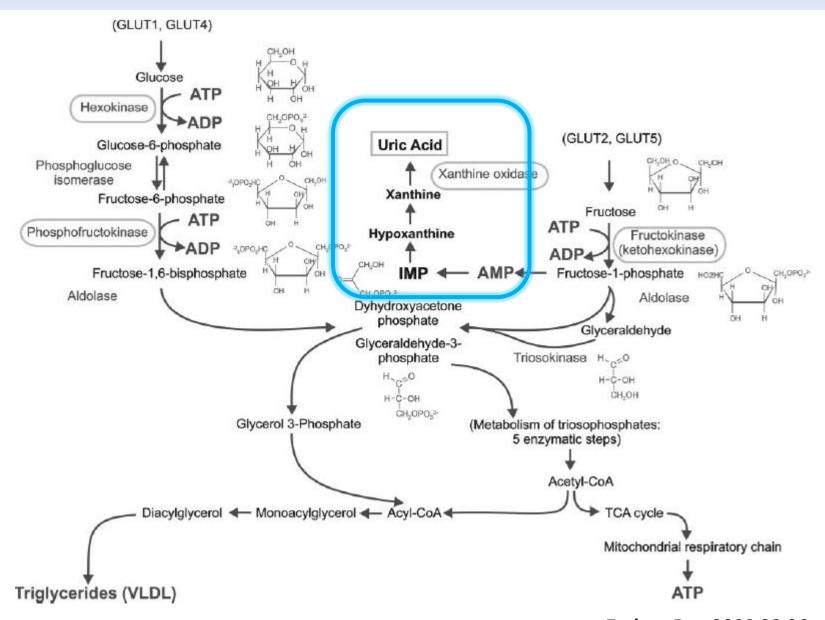


Stimulation of FA synthesis

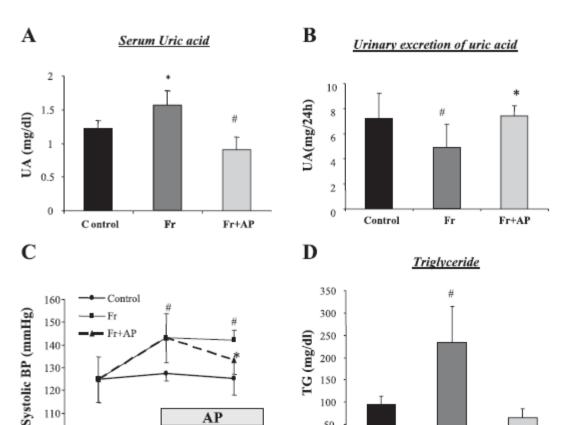
- 1) Unregulated provision of triose-P and acetyl-CoA
- 2) Increased expression of key lipogenic genes

Unique metabolic disturbances underlie the induction of insulin resistance

Mechanism of fatty acid induced IR in skeletal muscle as proposed by Randle et al.


Proposed alternative mechanism for fatty acidinduced IR in human skeletal muscle

J Clin Invest 2000;106:171

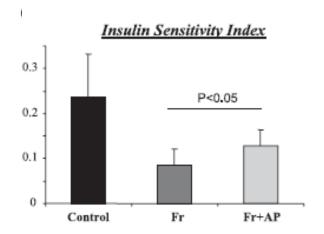

Fructose-Induced Insulin Resistance

- Classic obesity-associated mechanisms
 Fructose ingestion and satiety responses
- Independent of weight gain or differences in energy intake
 - Fructose-induced dyslipidemia
 - Fructose-induced hyperuricemia
 - Fructose-induced oxidative stress and inflammation
 - Fructose-induced leptin resistance
 - Endotoxin mediated inflammation, lipogenesis

Fructose, hyperuricemia, and insulin resistance

Endocr Rev 2009:30:96

100


50

Control

 \mathbf{Fr}

Fr+AP

Effects of allopurinol (AP) treatment for hyperuricemia on metabolic parameters in fructose-fed(Fr) rats

AP

8 Weeks

110-

100-

Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study

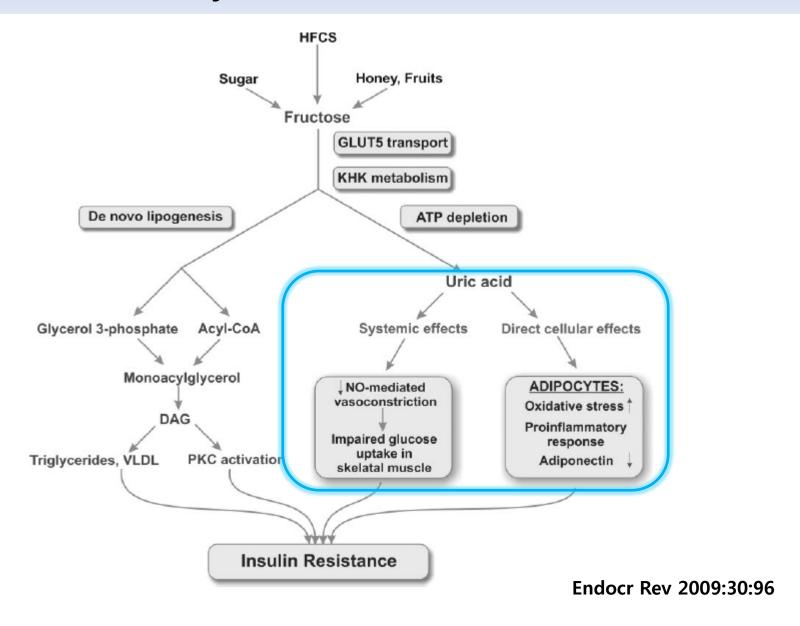
Relative risk of incident gout in men according to levels of soft drink consumption

	Frequency of intake (servings)						
Variable	<1/month	1/month-1/week	2-4/week	5-6/week	1/day	≥2/day	P for trend
Sugar sweetened soft drinks:							
No of cases	279	251	82	88	39	16	_
Person years	158 891	151 173	53 086	47 433	20 485	7392	_
Age, BMI, alcohol, and energy adjusted relative risk (95% CI)	1.0*	1.00 (0.84 to 1.19)	1.00 (0.78 to 1.29)	1.30 (1.01 to 1.67)	1.44 (1.02 to 2.04)	1.78 (1.06 to 2.98)	0.002
Multivariate relative risk (95% CI)†	1.0*	1.00 (0.84 to 1.20)	0.99 (0.77 to 1.29)	1.29 (1.00 to 1.68)	1.45 (1.02 to 2.08)	1.85 (1.08 to 3.16)	0.002

RR of incident gout in men according to fructose intake

	Fifths of fructose intake					
Variable	1st	2nd	3rd	4th	5th	P for trend
Free fructose (% of energy):	3.5	3.5-4.4	4.5-5.3	5.4-6.6	>6.6	
No of cases	152	154	146	160	143	_
Person years	87 136	87 618	87 818	88 050	87 839	_
Age, BMI, alcohol, and energy adjusted relative risk (95% CI)	1.0	1.19 (0.95 to 1.49)	1.21 (0.96 to 1.53)	1.45 (1.15 to 1.83)	1.43 (1.12 to 1.83)	0.001
Multivariate relative risk* (95% CI)	1.0	1.26 (1.00 to 1.59)	1.33 (1.04 to 1.70)	1.68 (1.30 to 2.16)	1.81 (1.38 to 2.38)	<0.001
Multivariate relative risk† (95% CI)	1.0	1.29 (1.02 to 1.64)	1.41 (1.09 to 1.82)	1.84 (1.40 to 2.41)	2.02 (1.49 to 2.75)	<0.001
Total fructose‡ (% of energy):	<6.9	6.9-8.5	8.6-10.0	10.1-11.8	>11.8	
No of cases	186	139	153	137	140	_
Person years	87050	87761	87815	88087	87748	_
Age, BMI, alcohol, and energy adjusted relative risk (95% CI)	1.0	0.90 (0.72 to 1.13)	1.11 (0.88 to 1.39)	1.08 (0.85 to 1.37)	1.24 (0.97 to 1.57)	0.04
Multivariate relative risk* (95% CI)	1.0	0.96 (0.76 to 1.21)	1.20 (0.95 to 1.53)	1.25 (0.96 to 1.61)	1.52 (1.15 to 2.01)	0.001
Multivariate relative risk† (95% CI)	1.0	0.98 (0.77 to 1.25)	1.29 (1.00 to 1.67)	1.41 (1.06 to 1.88)	1.81 (1.31 to 2.50)	<0.001

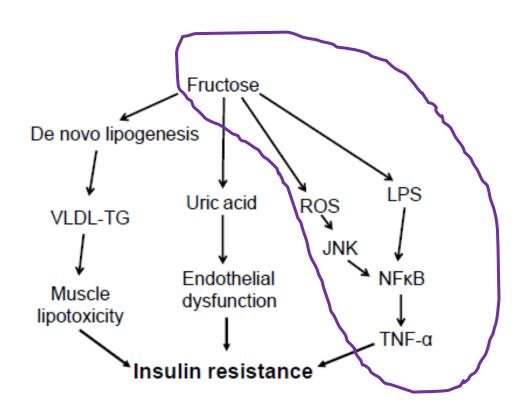
BMJ 2008;336:309


High serum uric acid as a novel risk factor for Type 2 DM

HR for incident of T2DM according to levels of uric acid
4516 population, 10 years of f/u

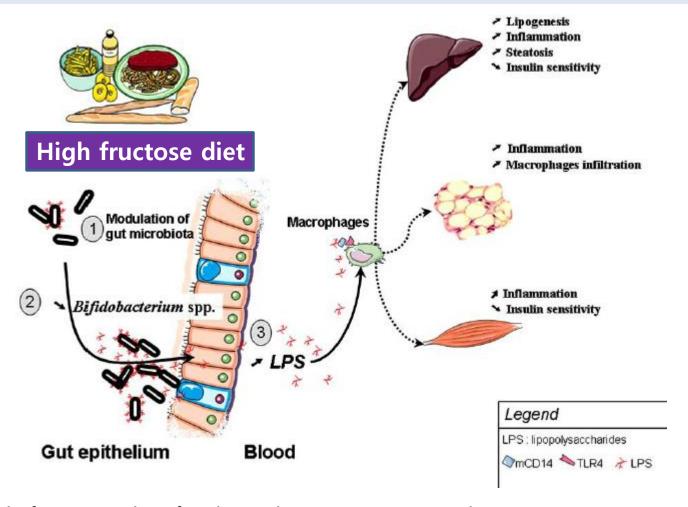
		HR (95% CI)				
Serum uric acid quartile	Participants (cases)	Model 1	Model 2	Model 3		
1 (≤267 μmol/l)	1,153 (77)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)		
2 (268-310 µmol/l)	1,141 (94)	1.30 (0.96-1.76)	1.14 (0.83-1.57)	1.08 (0.78-1.49)		
3 (311-370 µmol/l)	1,175 (120)	1.63 (1.21-2.19)	1.23 (0.89-1.67)	1.12 (0.81-1.53)		
4 (>370 μmol/l)	1,067 (171)	2.83 (2.13-3.76)	1.92 (1.41-2.62)	1.68 (1.22-2.30)		
P for trend		< 0.001	< 0.001	< 0.001		
1 SD increment	4,536 (462)	1.53 (1.39-1.67)	1.37 (1.23-1.52)	1.31 (1.18-1.46)		

Model 1: age, sex, Model 2: model 1 +BMI, WC, Model 3: model 2+BP, HDL-C


Potential mechanisms by which fructose and uric acid may induce insulin resistance

Fructose-Induced Insulin Resistance

- Classic obesity-associated mechanisms
 Fructose ingestion and satiety responses
- Independent of weight gain or differences in energy intake
 - Fructose-induced dyslipidemia
 - Fructose-induced hyperuricemia
 - Fructose-induced oxidative stress and inflammation
 - Endotoxin mediated inflammation, lipogenesis
 - Fructose-induced leptin resistance


Fructose induced oxidative stress and inflammation

Fructose-Induced Insulin Resistance

- Classic obesity-associated mechanisms
 Fructose ingestion and satiety responses
- Independent of weight gain or differences in energy intake
 - Fructose-induced dyslipidemia
 - Fructose-induced hyperuricemia
 - Fructose-induced oxidative stress and inflammation
 - Endotoxin mediated inflammation, lipogenesis
 - Fructose-induced leptin resistance

The role of the Gut microbiota in energy metabolism and metabolic disease

High fructose diet feeding changes gut microbiota, promotes endotoxemia and triggers the development of metabolic disorders via a CD14/TLR4 dependent mechanism

Nonalcoholic Fatty Liver Disease in Humans Is Associated with Increased Plasma Endotoxin and Plasminogen Activator Inhibitor 1 Concentrations and with Fructose Intake¹


Abstract

Results of animal experiments suggest that consumption of refined carbohydrates (e.g. fructose) can result in small intestinal bacterial overgrowth and increased intestinal permeability, thereby contributing to the development of nonalcoholic fatty liver disease (NAFLD). Furthermore, increased plasminogen activator inhibitor (PAI)-1 has been linked to liver damage of various etiologies (e.g. alcohol, endotoxin, nonalcoholic). The aim of the present pilot study was to compare dietary factors, endotoxin, and PAI-1 concentrations between NAFLD patients and controls. We assessed the dietary intake of 12 patients with NAFLD and 6 control subjects. Plasma endotoxin and PAI-1 concentrations as well as hepatic expression of PAI-1 and toll-like receptor (TLR) 4 mRNA were determined. Despite similar total energy, fat, protein, and carbohydrate intakes, patients with NAFLD consumed significantly more fructose than controls. Endotoxin and PAI-1 plasma concentrations as well as hepatic TLR4 and PAI-1 mRNA expression of NAFLD patients were significantly higher than in controls. The plasma PAI-1 concentration was positively correlated with the plasma endotox in concentration (Spearman r = 0.83; P < 0.005) and hepatic TLR4 mRNA expression (Spearman r = 0.54; P < 0.05). Hepatic mRNA expression of PAI-1 was positively associated with dietary intakes of carbohydrates (Spearman r = 0.67; P < 0.01), glucose (Spearman r = 0.58; P < 0.01), fructose (Spearman r = 0.58; P < 0.01), and sucrose (Spearman r = 0.70; P < 0.70). 0.01). In conclusion, our results suggest that dietary fructose intake, increased intestinal translocation of bacterial endotoxin, and PAI-1 may contribute to the development of NAFLD in humans. J. Nutr. 138: 1452-1455, 2008.

Fructose-Induced Insulin Resistance

- Classic obesity-associated mechanisms
 Fructose ingestion and satiety responses
- Independent of weight gain or differences in energy intake
 - Fructose-induced dyslipidemia
 - Fructose-induced hyperuricemia
 - Fructose-induced oxidative stress and inflammation
 - Endotoxin mediated inflammation, lipogenesis
 - Fructose-induced leptin resistance

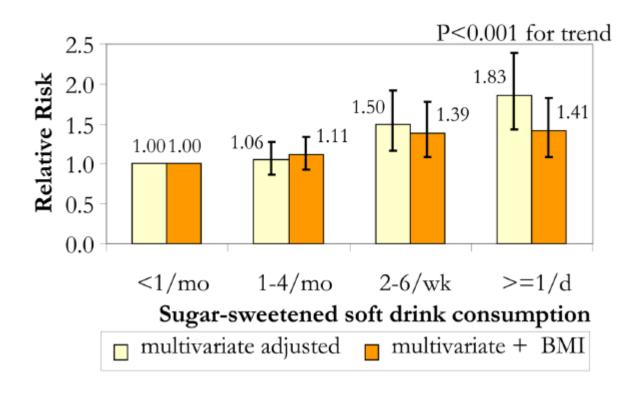
Proposed effects of fructose ingestion on liver leptin signal transduction pathway

Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/threonine (Ser/Thr) phosp hoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid met abolism

Introduction

Unique characteristics of Fructose Metabolism

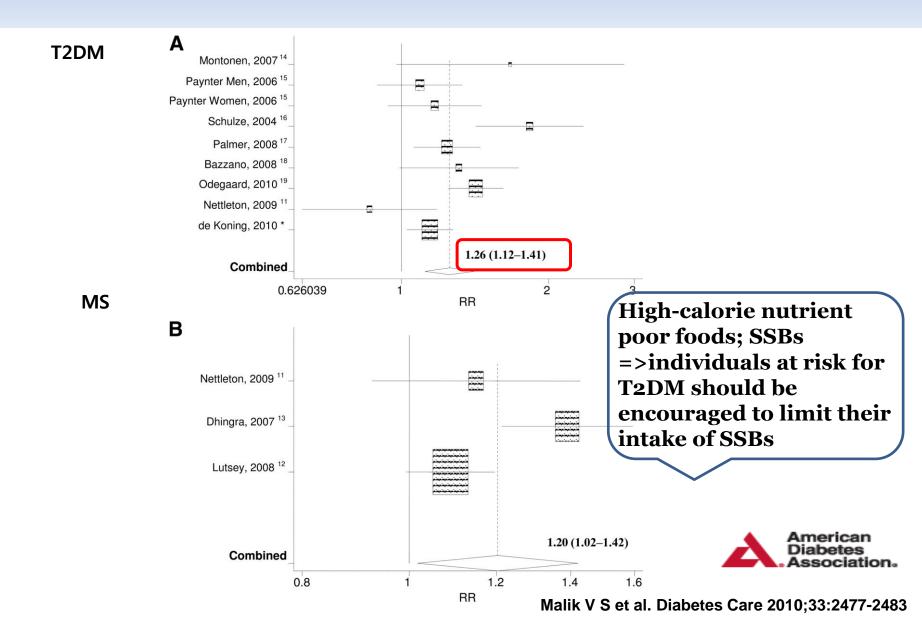
Mechanism for Fructose-Induced Insulin Resistance


Epidemiological Studies

: Fructose intake and Type 2 diabetes

Summary

Sugar-sweetened beverages, incidence of T2DM in young and middle-aged women


From 1991 to 1999 among women in Nurses' Health Study II. N=91249 women

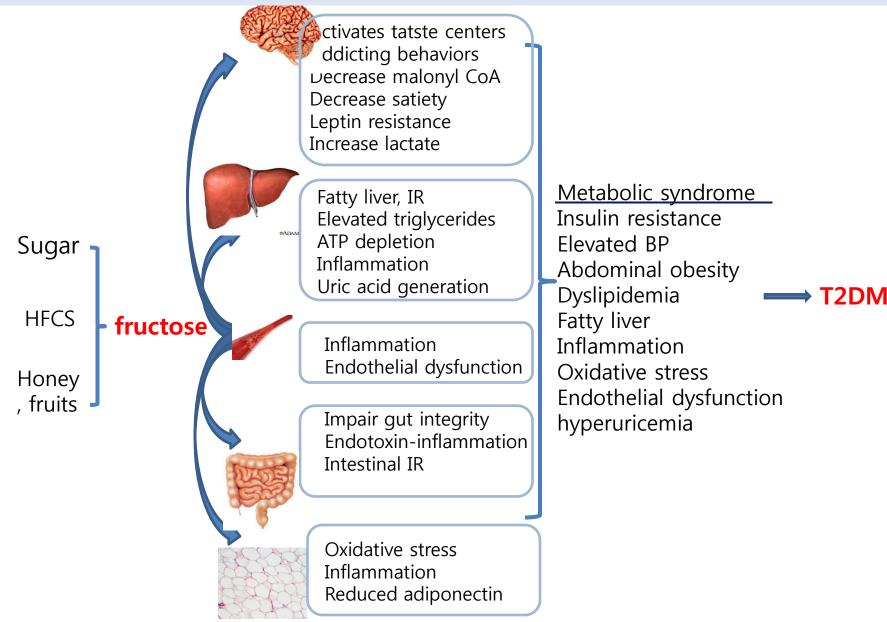
Relative risk of Type 2 diabetes according to frequencies of Sugar-Sweentened soft drink consumption by obesity status, physical activity level, family history of diabetes, and intake levels of cereal fiber, trans-fat, and P:S ratio in 91249 women

	No. of Cases	Sugar-Sweetened Soft Drink Intake, RR (95% C				
		<1/mo	1-4/mo	2-6/wk	≥1/d	P Value for Trend
Nonobese (BMI <30)†	143	1.00	1.14 (0.74-1.76)	1.60 (0.91-2.79)	1.78 (0.97-3.26)	.06
Obese (BMI ≥30)	579	1.00	1.08 (0.87-1.35)	1.31 (0.98-1.74)	1.35 (1.01-1.80)	.04
P value for interaction						.47
High physical activity‡	308	1.00	0.96 (0.71-1.30)	1.46 (0.99-2.15)	1.54 (1.01-2.33)	.02
Low physical activity‡	433	1.00	1.08 (0.84-1.38)	1.39 (1.01-1.91)	1.68 (1.21-2.32)	.001
P value for interaction						.83
Without family history	459	1.00	1.14 (0.89-1.45)	1.49 (1.09-2.04)	1.86 (1.34-2.56)	<.001
With family history	282	1.00	0.86 (0.62-1.20)	1.32 (0.89-1.96)	1.30 (0.85-1.99)	.12
P value for interaction						.52
High cereal fiber intake§	319	1.00	0.94 (0.71-1.26)	1.33 (0.89-1.98)	1.44 (0.86-2.42)	.08
Low cereal fiber intake	422	1.00	1.15 (0.88-1.50)	1.52 (1.10-2.08)	1.79 (1.31-2.43)	<.001
P value for interaction						.58
High P:S ratio§	356	1.00	1.02 (0.77-1.35)	1.65 (1.16-2.36)	1.64 (1.11-2.43)	.005
Low P:S ratio	385	1.00	1.04 (0.80-1.37)	1.22 (0.87-1.72)	1.53 (1.09-2.15)	.01
P value for interaction						.44
Low trans-fat intake§	280	1.00	1.07 (0.78-1.48)	1.69 (1.14-2.50)	1.59 (1.03-2.44)	.02
High trans-fat intake	461	1.00	1.00 (0.79-1.28)	1.26 (0.92-1.72)	1.66 (1.21-2.27)	.001
P value for interaction						.87

SSBs and Risk of T2DM and MS: A meta-analysis

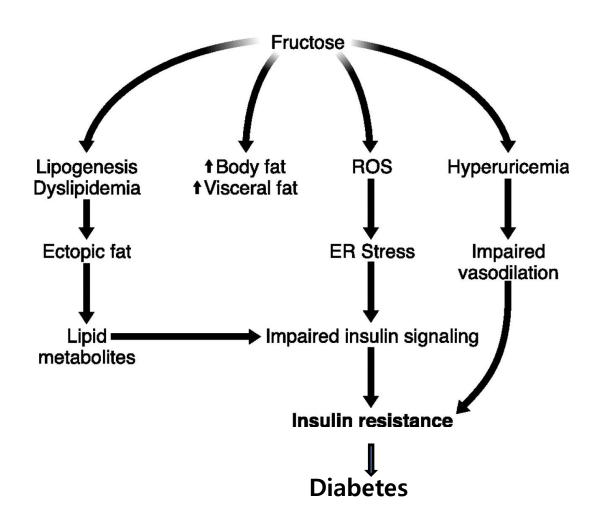
Introduction

Unique characteristics of Fructose Metabolism


Mechanism for Fructose-Induced Insulin Resistance

Epidemiological Studies

: Fructose intake and Type 2 diabetes


Summary

Effects of fructose on various organ

Endocr Rev 2009:30:96

Potential mechanisms on T2DM of Fructose

Summary

- Fructose induce the deleterious effect on glucose metabolism and insulin sensitivity
- Insulin resistance is closely linked to lipid metabolism disorders;
 - higher ectopic lipid deposition, toxic lipid-derived metabolites reduce insulin signaling
- Old hypothesis
 - Excessive intake of sugar, and in particular fructose, may be an important cause of T2DM.
 - =>No old hypothesis : may be right!
- Although more research is needed, sufficient evidence exists for public health strategies to discourage consumption of fructose as part of a healthy lifestyle