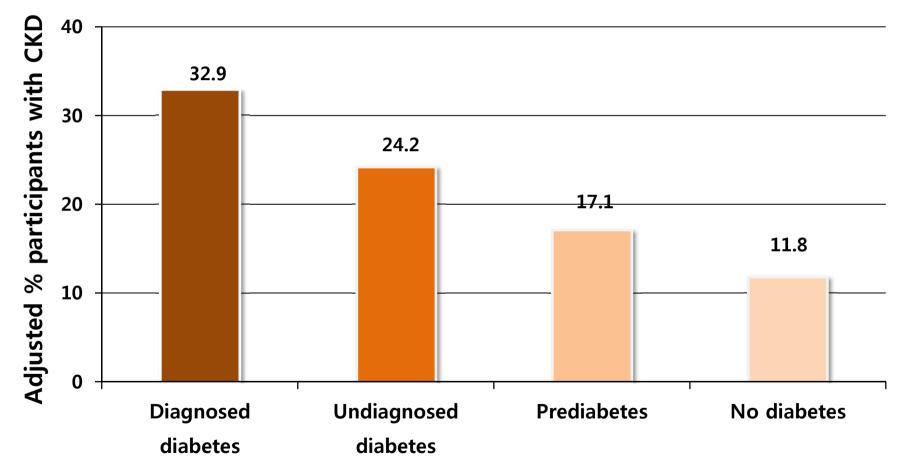
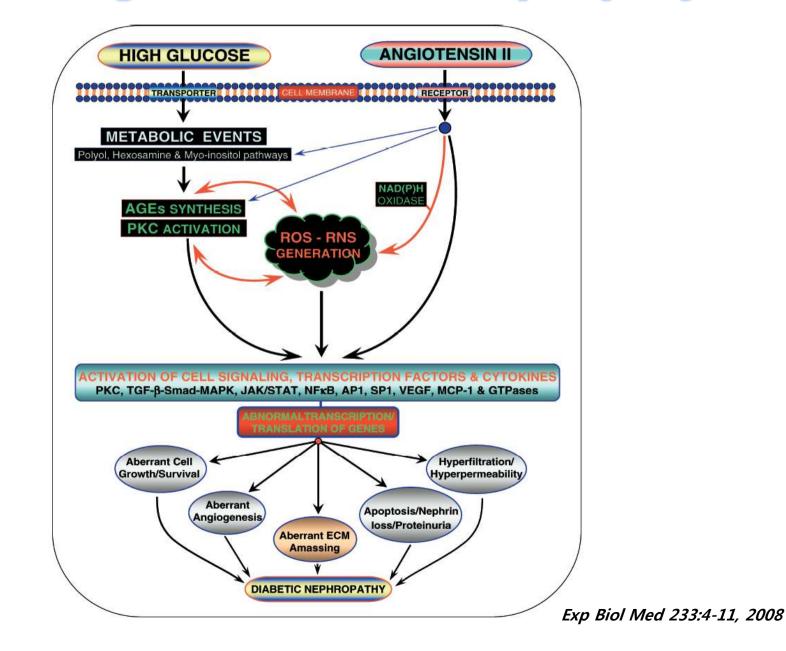

Urinary biomarkers for early detection of diabetic nephropathy: focused on tubular and inflammatory damage

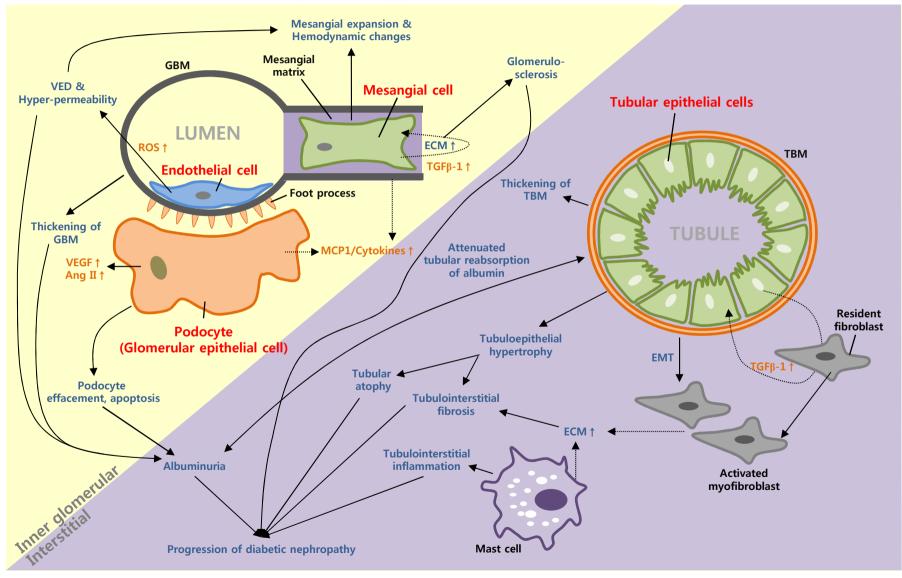
Sang Soo Kim Pusan National University Hospital


Overt nephropathy

IDF Diabetes Atlas 2011 From Dr. Remuzzi's lecture: Berlin, July 3, 2012


Participants with CKD by diabetes status

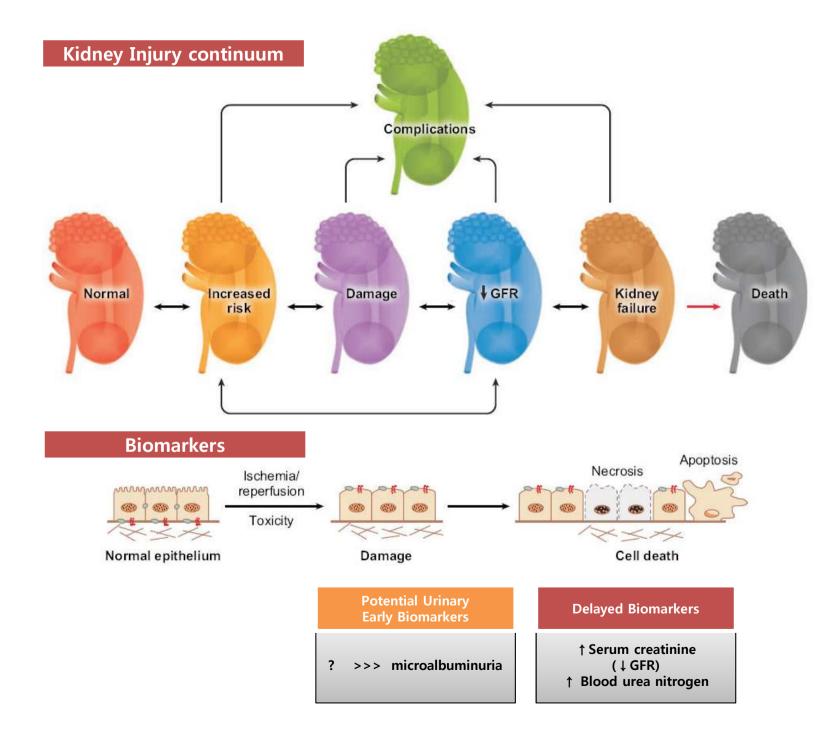
NHANES 1999-2006



* CKD, defined as MDRD-based eGFR <60mL/min/1.73m2 or ACR ≥30 mg/g

The Pathogenesis of Diabetic Nephropathy

Involvement of different renal cell types in pathogenesis of DN



Trends Endocrinol Metab 21:50-6, 2010

5 stages 'conventional' DN (1980s)

Stage 1	Reversible glomerular hyperfiltration
Stage 2	Normal glomerular filtration rate (GFR) and normoalbuminuria
Stage 3	Microalbuminuria and normal GFR (5 to 10 years after diabetes mellitus discovery)
Stage 4	Proteinuria appears and may reach nephrotic range levels (after 10 to 20 years of evolution)
Stage 5	Chronic kidney disease which leads to terminal kidney disease (usual GFR slope < 10 mL/min/year)

Diabetes Metab 38:291-297, 2012

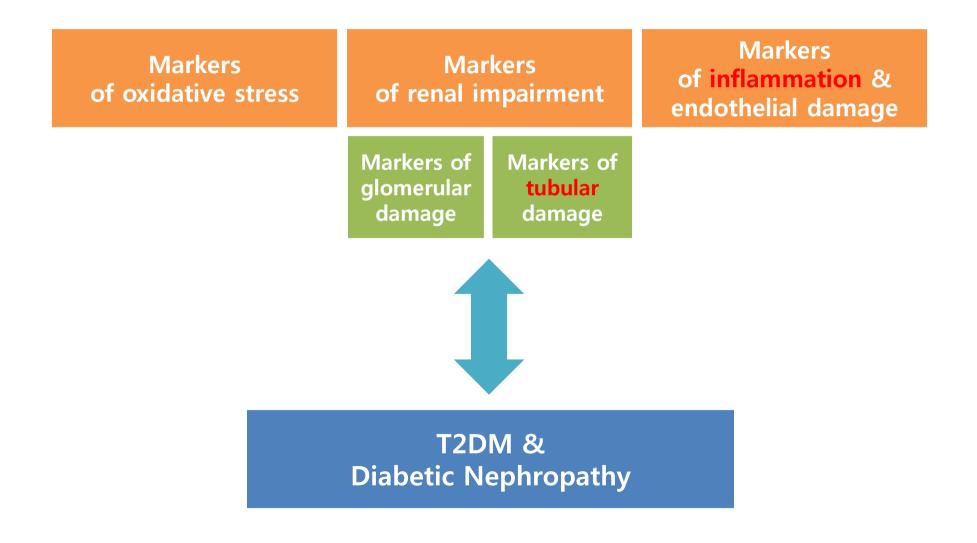
Urinary sample

- Easily accessible in a **non-invasive manner**,
- Presents as an ideal source of potential biomarkers for clinical diagnosis of human disease.
- Identification of urine biomarkers has proven to be beneficial in recent years because of ease of handling, stability, and the ability to standardize the various markers to creatinine or other peptides generally already present in the urine.
- Several biomarkers emerged recently that are able to detect
 kidney damage earlier than is currently possible with traditional
 biomarkers such as serum creatinine and proteinuria.

Proteinuria: excessive urinary protein excretion

1. Glomerular proteinuria

- an increase in the permeability of the glomerular capillary wall to macromolecules (particularly **albumin**).
- usually results from glomerular disease.


2. Tubular proteinuria

- reduced reabsorption of proteins that are normally present in the glomerular filtrate or from excretion of proteins derived from injured tubular epithelial cells.
- caused by diseases of the tubulointerstitium.

3. Overload proteinuria

- an excess of low-molecular-weight proteins that are normally reabsorbed by the proximal tubules.
- immunoglobulin light chains (plasma cell dyscrasias), lysozyme (myelomonocytic leukemia), myoglobin (rhabdomyolysis) or hemoglobin (intravascular hemolysis).

Urinary marker of diabetic nephropathy

Some urinary biomarkers of oxidative stress associated with type 2 diabetes

- 8-Hydroxy-2'deoxyguanosine (8-OHdG) *
- Acrolein-lysine adducts
- Isoprostanes *
- Specific isoprostane: 8-iso-prostaglandin F2alpha
- Malondialdehyde
- Pentosidine *
- Pyrraline *

* investigated in the study about diabetic nephropathy

J Lab Clin Med 144: 92–99, 2004 Diabetes Care 26: 1507–1512, 2003 J Pharm Biomed Anal 36: 101–104, 2004 Diabetologia 45: 877–882, 2002 Clin Chim Acta 339:1–9, 2004 Nephro 91: 327–329, 2002 Diabetes 54: 3274–3281, 2005

Markers of glomerular damage

Studies evaluating urinary biomarkers associated with glomerular damage

Biomarkers	Ref.	Type of DM (n) / Characteristics	Study design	Main findings
Albumin	Aldler et al. 2003	T2DM (5,102) / Newly diagnosed DM	Observed and modeled data in UKPDS (10yr FU)	Progression to micro-: 2.0%/yr Micro- → Macro-: 2.8%/yr Prevalence: Micro- 24.9% / Macro- 5.3%
Albumin	Afgphahi et al. 2011	T2DM (3,667) / Normo- & GFR>60	Observational (5 yr FU)	20%: developed albuminuria
Type IV collagen	Lijima et al. 1998	T2DM (94) / Normo- + Micro-	Observational (1yr FU)	uIVC, higher in Micro- than Normo-
Type IV collagen	Kotajima et al. 2000	T2DM (82) / Cr <1.4, Normo-	Cross-sectional	uIVC, higher in DM than control
Type IV collagen	Katavetin et al. 2010	T2DM (30) / Proteinuria	Observational (4.2 yr FU)	uIVC, negatively correlated with annual GFR change.
Transferrin	Narita et al. 2006	T2DM (117) / Normo-	Observational (5 yr FU)	uTf, higher in patents who progressed to micro.
Transferrin	Kazumi et al. 1999	T2DM (77) / Normo-	Observational (2 yr FU)	uTf, lower in patents who remained normo.

Albuminuria

- MW 65 kDa
- A well-established marker of **glomerular damage**.
- A marker and independent risk factor of **development** of both **renal** and CVD in both the diabetic and the general population.
- might actually play a direct role in the progression of renal disease
- **Microalbuminuria** the first sign of diabetic renal impairment or incipient nephropathy
- 20 to 40% of type 2 diabetic patients develop microalbuminuria within 10–15 years of diagnosis,
- Macroalbuminuria occurs at a later stage, within 15–20 years, in 20–40% of patients

Normoalbuminuric renal insufficiency

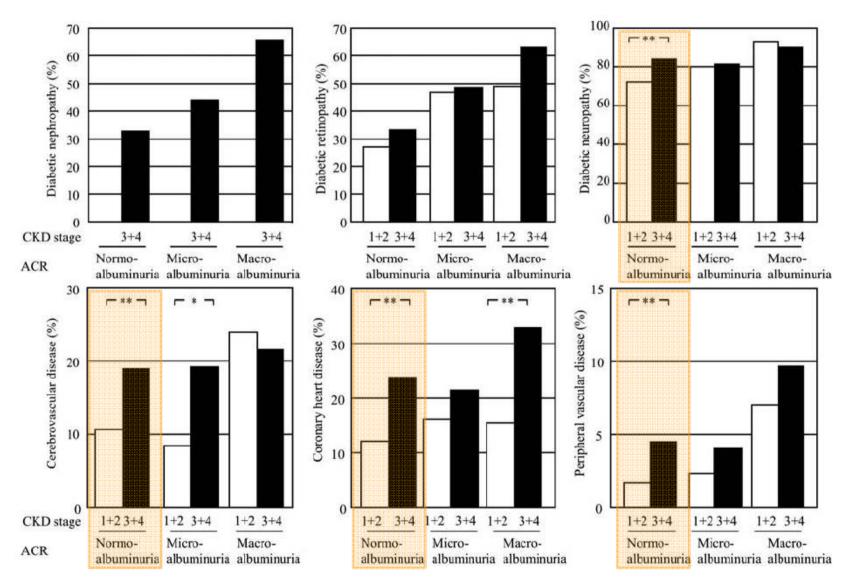
• Prevalence of micro- and macroalbuminuria in T2DM with chronic renal insufficiency

	Subjects With Type Diabetes Mellitus, % (95% Confidence Inter	% in Millions
Microalbuminuria (sampled n = 64)	45 (31-59)	0.6 (0.3-0.7)
Macroalbuminuria (sampled n = 47)	19 (10-28)	0.2 (0.1-0.3)
Retinopathy (sampled $n = 58$)	28 (21-36)	0.3 (0.2-0.4)
No retinopathy or albuminuria (sampled n = 51)‡	30 (21-39)	0.3 (0.2-0.4)

• In Korean T2DM

		Normo- albuminuria	Micro- albuminuria	Macro- albuminuria
All (n=562)	eGFR ≥60	305 (74.2)	96 (23.4)	10 (2.4)
	eGFR <60	44 (29.1)	50 (33.1)	57 (37.8)
Without	eGFR ≥60	67 (81.7)	15 (18.3)	0 (0.0)
RAS inhibitors	eGFR < 60	18 (35.3)	21 (41.2)	12 (23.5)
(n=133)				

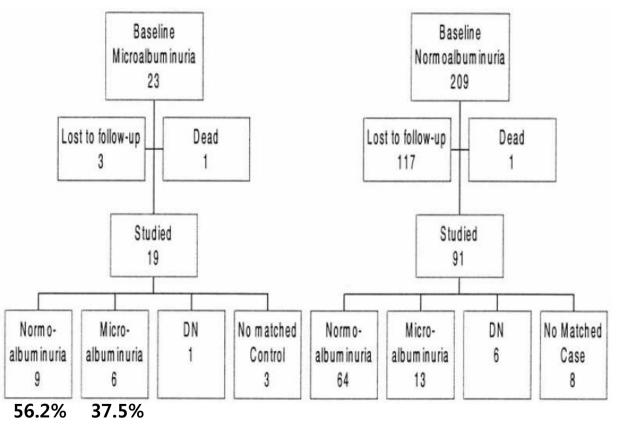
JAMA 289:3273-3277, 2003 J Korean Med Sci 24:S75-81, 2009


Normoalbuminuric renal insufficiency

	COIR				
	>60 ml/min per	15–60 ml/min per			
	1.73 m ²	1.73 m ²	Р		
n	576	84			
Female subjects	444 (77.4)	51 (60.2)	0.002		
Age (years)	56.8 ± 9.5	62.9 ± 10.3	< 0.001		
Diabetes duration (years)	9.3 ± 7.1	10.1 ± 7.0	0.318		
BMI (kg/m ²)	28.9 ± 5.2	29.0 ± 5.4	0.841		
Male waist circumference (m)	0.98 ± 0.11	0.100 ± 0.65	0.449		
Female waist circumference (m)	0.95 ± 0.12	0.98 ± 0.12	0.348		
Obesity	518 (90.9)	75 (89.7)	0.375		
Smoking	97 (16.4)	9 (11.4)	0.474		
Systolic blood pressure (mmHg)	130.0 ± 22.2	146.0 ± 23.7	0.069		
Diastolic blood pressure (mmHg)	86.0 ± 12.3	87.0 ± 16.9	1.000		
Hypertension	334 (58.7)	56 (67.5)	0.140		
HOMA-IR*	4.84 (0.3–45)	11.4 (1.6–44.7)	0.015		
A1C (%)	7.07 ± 2.18	6.74 ± 2.35	0.259		
Fasting plasma glucose (mg/dl)	175 ± 70.2	164 ± 76.7	0.521		
Cholesterol (mg/dl)					
Total	205.3 ± 43.9	222.8 ± 52.0	0.014		
HDL	46.4 ± 11.9	44.9 ± 10.6	0.288		
LDL	122.1 ± 40.1	143.0 ± 46.0	0.028		
Triglycerides (mg/dl)	158 (55–549)	176 (47-842)	0.006		
UAE rate (mg/l)	4 (0.1-28.5)	2.35 (1-17)	0.181		
Creatinine (mg/dl)	0.9 (0.5–1.2)	1.22 (0.98–2.6)			
eGFR (ml/min per 1.73 m ²)	88.0 (60.7–186.5)	54.2 (31.3-59.7)			
Metabolic syndrome	403 (70.2)	68 (81.9)	0.027		

eGFR

Diabetes care 30: 1998-2000, 2007


Normoalbuminuric renal insufficiency

Nephrol Dial Transplant 25: 1161-1167, 2010

Does Microalbuminuria Predict Diabetic Nephropathy?

- A prospective longitudinal study of patients with T1DM and T2DM with and without MA
- 7 year follow-up

The negative predictive value of microalbuminuria among T2DM for DN was 77% while the positive value was only 43%,

Diabetes Care 24:1560-1566, 2001

Microalbuminuria in DN

- It has variable course !
 - The progression to macroalbuminuria is unpredictable
 - It dose **not always** lead to the development of nephropathy¹
- Some diabetic patients
 - even if urinary albumin levels are in the normal range they have advanced renal pathological changes and progressive kidney function decline²
- Need for more sensitive and specific biomarker than urinary albumin !

Urinary Transferrin

- Slightly larger than albumin (**MW 76.5** >65 kDa)
- Indicates **glomerular dysfunction** when present in urine
- With a pI one unit higher than albumin, **less anionic**
- More readily filtered through the glomerular barrier and

excreted in urine

Rinsho Byori 46: 277–282, 1998 Diabetes Care 22: 1176–1180, 1999 Diabetes Care 25: 1176–1181, 2004

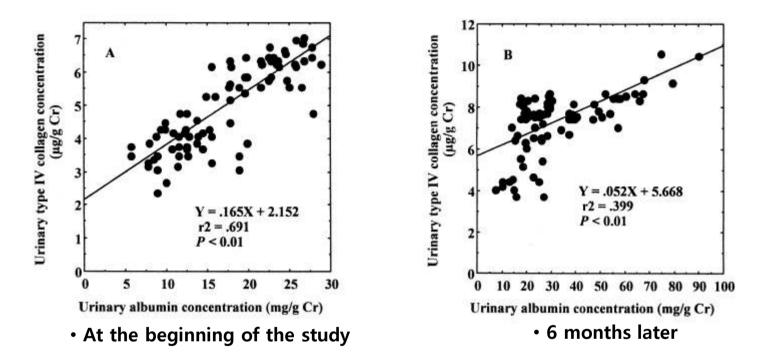
Increased Urinary Excretion of Transferrin Predict Development of Microalbuminuria in T2DM

• 140 type 2 diabetic patients with normoalbuminuria from outpatients

	Control subjects	Progressors	Nonprogressors	<i>P</i> value (progressors vs. nonprogressors)
U-Alb/Cr (mg/gCr)	5.3 (3–14.8)	9.0 (3.7–29)	6.5 (1.1–24)	0.0003
U-IgG/Cr (mg/gCr)	1.9 (1.2–4.6)	3.9 (0.96–7.7)	2.4 (0.83–6.5)	0.0031
U-CRL/Cr (g/gCr)	42 (12–90)	71 (38–170)	53 (0.36–84)	0.0094
U-Tf/Cr (g/gCr)	140 (53–440)	290 (150–970)	140 (29–1300)	0.0001
U-NAG/Cr (U/gCr)	2.2 (0.16–5.0)	3.7 (0.47–11)	3.8 (0.067–11)	NS

Diabetes Care 29: 142-144, 2006

Extracellular matrix accumulation: Type IV collagen


- A Major component of **basement membranes**
- Provides structural/functional support to various cell types
- Expressed in both the **glomerular/tubular basement membrane**

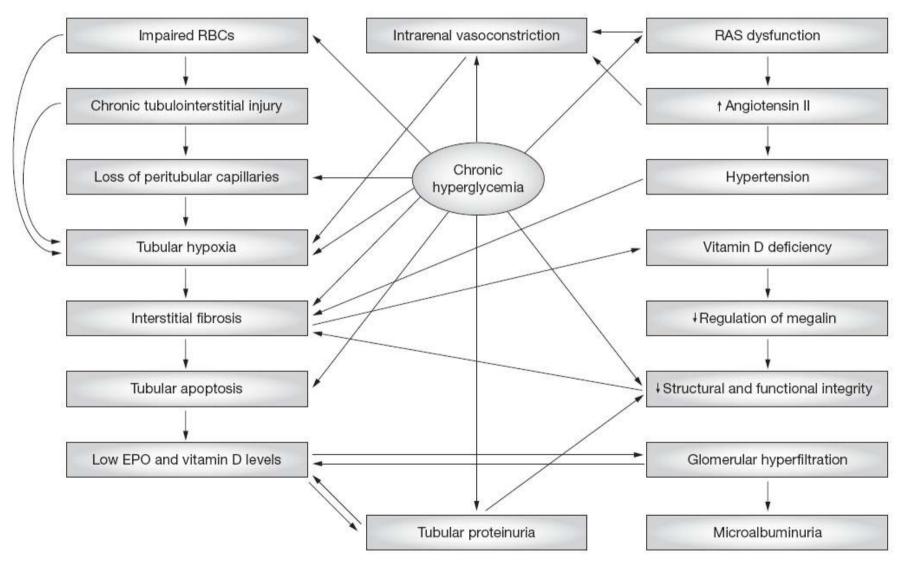
and mesangial matrix

• ~540 kDa, its excretion \rightarrow the rate of matrix synthesis/degradation

Rinsho Byori 46: 277–282, 1998 Clin Nephrol 55: 357-364, 2001 J Clin Lab Anal 12: 378–382, 1998

Type IV collagen as an early marker for diabetic nephropathy in T2DM

- 62.2% of the patients developed an increased type IV collagen excretion within 6 months and 32.9% of these showed an increase in urinary type IV collagen excretion but not in albuminuria.
- uIVC may be a useful marker for early diabetic nephropathy


Markers of tubular damage

Tubular damage markers in T2DM

Tubular damage markers

- extensively investigated in the field of predicting the occurrence of **acute kidney injury (AKI)** after various nephrotoxic insults, such as ischemia during cardiac surgery, sepsis, and administration of contrast medium.
- Little research has been done in patients with **CKD including DM**.
- Recently, several studies have provided evidence for the involvement of renal tubular dysfunction as well as glomerulopathy in the CKD progression in diabetic patients with macrovascular diseases.

The hypoxic tubular hypothesis of diabetic nephropathy

Nat Clin Pract Nephrol 4: 216-226, 2008

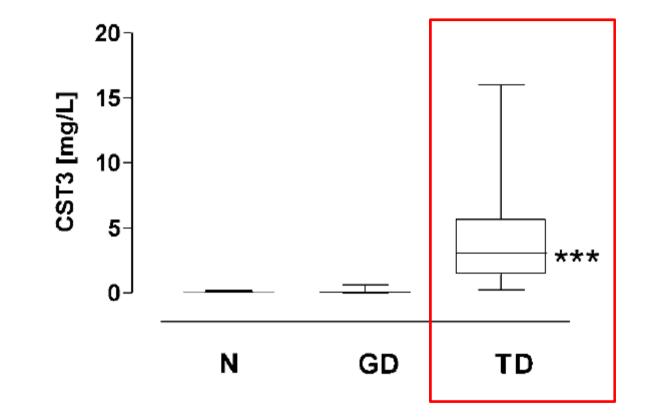
Impaired reabsorption by the tubular cells	Increased secretion of enzymes by tubular epithelia cells
RBP4 A1MG B2MG Immunoglobulin light chains Cystatin C KIM-1 NGAL FABP	NAG AAP

Tubular protein

Urinary Tubular markers for diabetic nephropathy

Urinary Tubular Markers	Ref.	Type of diabetes (n) / Characteristics	Study design	Main findings
U-NGAL	Yang et al. 2009	T2DM (74) / All GFR	1-year observational	U-NGAL was correlated with GFR at baseline and follow-up level.
U-NGAL	Bolignano et al. 2009	T2DM (56) / GFR ≥ 30, RASi(+)	Cross-sectional	U-NGAL increased with increasing degree of albuminuria.
U-LFABP	Nielsen et al. 2009	T1DM (148) / All GFR	Cross-sectional; Invervention (ACEi)	U-FFABP was higher in NA vs. control and associated with albuminuria. ACEi reduced U-LFABP from baseline.
U-LFABP	Nielsen et al. 2010	T1DM (2010) / All GFR	18-year Prospective observational	High u-LFABP predict the initiation and progression of DN and all-cause mortality.
U-KIM-1, U-NGAL	Nielsen et al. 2010	T1DM (148) / All GFR	Cross-sectional; Invervention (ACEi)	U-NGAL and U-KIM-1 were elevated in NA of T1DM. U-NGAL increase significantly with increasing albuminuria.
U-Cystatin C	Jeon et al. 2011	T2DM (332) / All GFR	Cross- sectional	U-cystatin C increased with increasing degree of albuminuria
U-NGAL, U-LFABP, U-KIM-1	Nielsen et al. 2011	T1DM (63) / GFR ≥ 60, DN (+) anti-HT (-)	3-year Intervention (RAS)	After adjustment, all markers had no association with a faster decline in GFR.

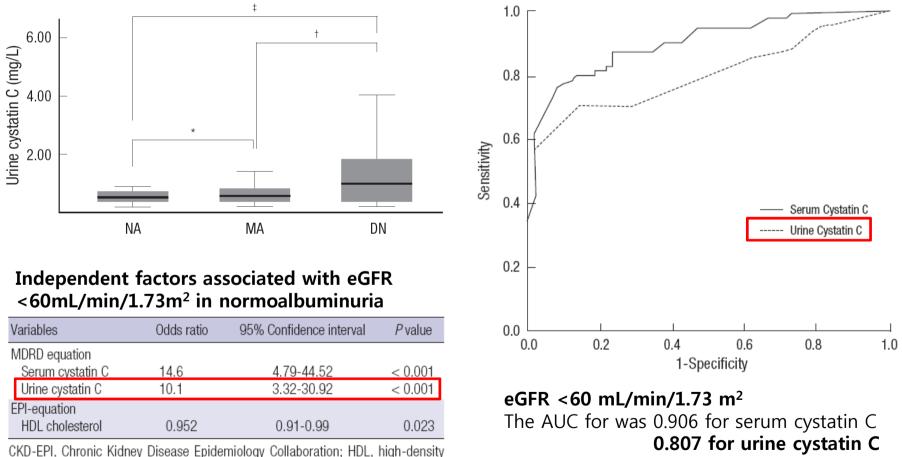
Urinary Tubular markers for diabetic nephropathy


Urinary Tubular Markers	Ref.	Type of diabetes (n) / Characteristics	Study design	Main findings
U-NAG, U-NGAL, U-HFABP, U-KIM-1, U-cystatin C	Nauta et al. 2011	T1DM and T2DM (94) / All GFR	Cross-sectional	All markers, except KIM-1, were associated with albuminuria. U-HFABP was associated with GFR.
U-KIM-1, U-NAG	Vaidya et al. 2011	T1DM (363) / All GFR	2-year Prospective observational	Lower levels of u-KIM-1 and u-NAG were associated with the regression of MA
U-KIM-1, U-LFABP, U-NGAL (U-IL-18, U-Ang)	Kim et al. 2012	T2DM (118) / eGFR ≥ 60 RASi (-)	Cross- sectional	Urinary tubular markers were associated with albuminuria and correlated with U-IL-18 and U-Ang.
U-Cystatin C	Kim et al. 2012	T2DM (237) / eGFR ≥ 30	Prospective observational	U-cystatin C preidict of the decline of eGFR (even in patients with eGFR \geq 60)
U-NGAL, U-NAG, U-KIM-1	Fu et al. 2012	T2DM (101) / All GFR Duration of diabetes : \leq 5 years Anti-HT (-)	Cross-sectional	Only U-NGAL was correlated with eGFR
U-NAG, U-KIM-1, U-NGAL	Fu et al. 2012	T2DM (88) / Hyperfiltration vs. normal GFR	Cross-sectional	Higher urinary tubular markers (NGAL and KIM-1) were found in hyperfiltration group.

Urinary cystatin C

Cystatin C

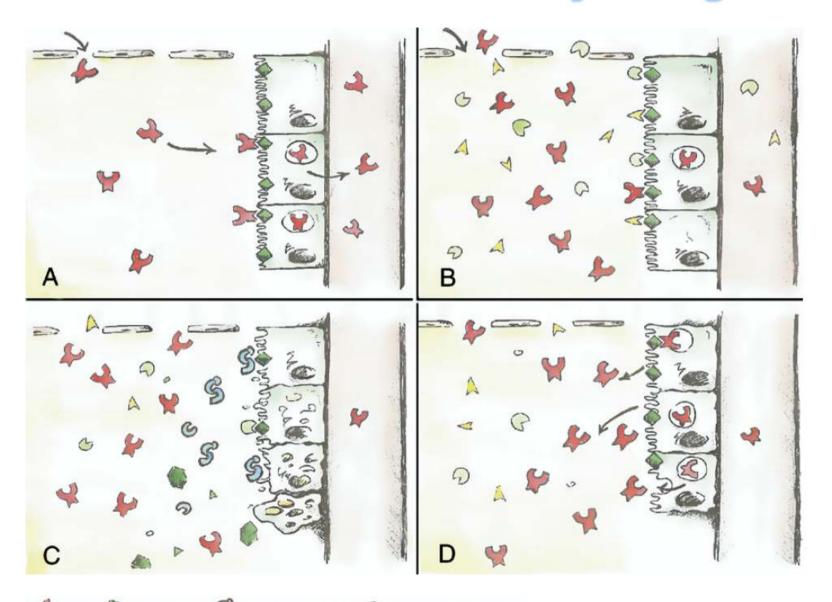
- a 13-kD endogenous cysteine proteinase inhibitor
- a stable production rate by most nucleated cells
- its plasma half-life is short (2hr in humans)
- low molecular weight and positive charge at physiological pH
 - \rightarrow it is freely filtered by the kidney glomerulus
- be considered as an endogenous marker of the GFR
- reabsorbed by the proximal tubules
- Urinary cystatin C
 - After glomerular filtration, CST3 is reabsorbed by the proximal tubular cells, where it is almost completely catabolized, with the remaining uncatabolized CST3 eliminated in the urine.


Urinary cystatin C as a specific marker of tubular dysfunction

Clin Chem Lab Med 44: 288-291, 2006

Urinary cystatin C as an early biomarker of nephropathy in type 2 diabetes

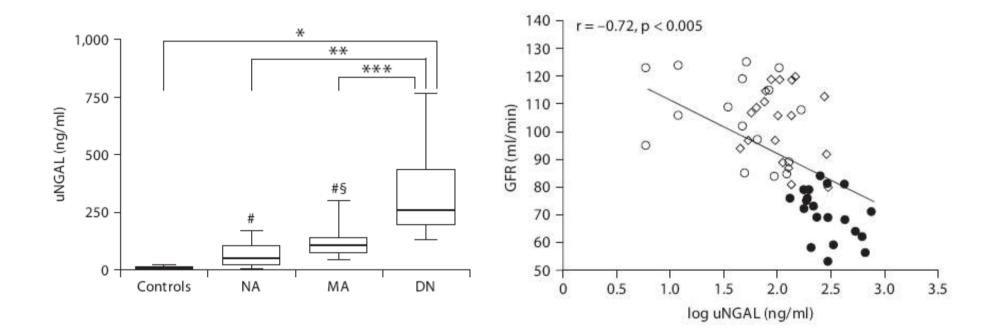
• 335 patients with type 2 diabetes who visited **PNUH (**Jan. 2008 – Oct. 2009)



CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; HDL, high-densit lipoprotein; MDRD, Modification of Diet in Renal Disease.

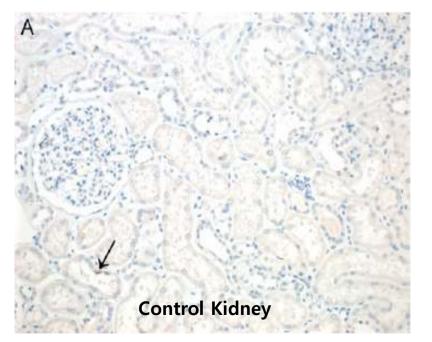
Urinary Neutrophil gelatinase-associated lipocalin (NGAL)

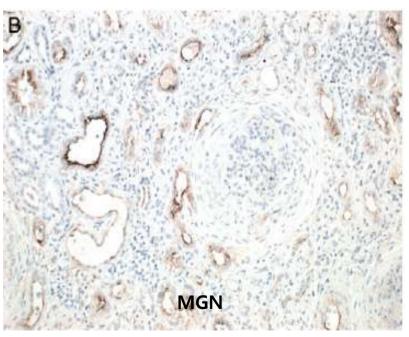
- a member of lipocalin family,
- originally identified as 25-kDa protein covalently associated with human MMP-9 from human neutrophils.
- stored mainly in the specific granules of **neutrophils**,
- also expresses at very low-levels in several human tissues, including kidney, trachea, lungs, stomach, and colon.
- found to possess diverse functions such as transporting, activating MMP 9, inducing apoptosis, regulating immune response and so on.
- can **trigger nephrogenesis** by stimulating the conversion of mesenchymal cells into kidney epithelia.
- also plays a renoprotective role through enhancing tubule cell proliferation in kidney injury, especially in ischemia-reperfusion injury.
- is a marker closely associated with obesity, insulin resistance, and hyperglycemia in human beings.


NGAL as a marker of kidney damage

Vgal 🌘 Megalin ରୁ 🖉 Complement 🕨 🍕 🖓 Plasmatic Proteins

Am J Kidney Dis 52: 595-605, 2008

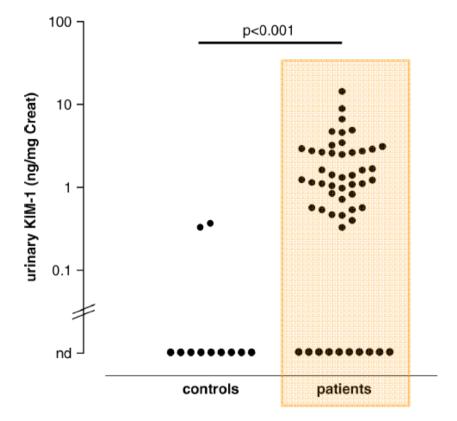

Urinary NGAL as an early biomarker of nephropathy in T2DM



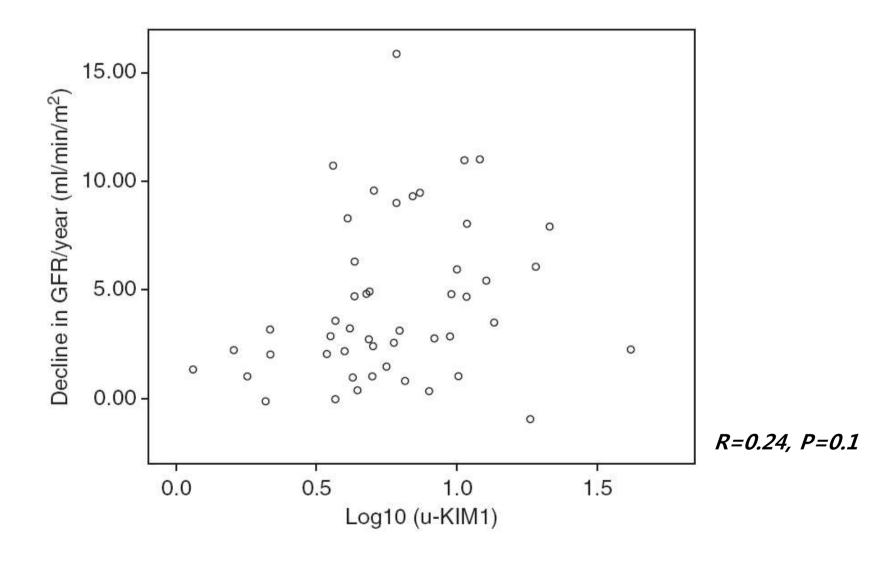
Kidney Blood Press Res 32: 91-98, 2009

Kidney Injury Molecule-1 (KIM-1)

- A transmembrane tubular protein with unknown function.
- Undetectable in normal kidneys, **markedly induced in experimental renal injury**.
- Expressed on the apical membrane of **proximal tubule cells** and its ectodomain is cleaved and released into the lumen of the tubule ultimately appearing in the urine where it is stable.
- A highly sensitive and specific biomarker for **proximal tubule injury** because of a wide variety of pathophysiological states and toxins in animals and humans.

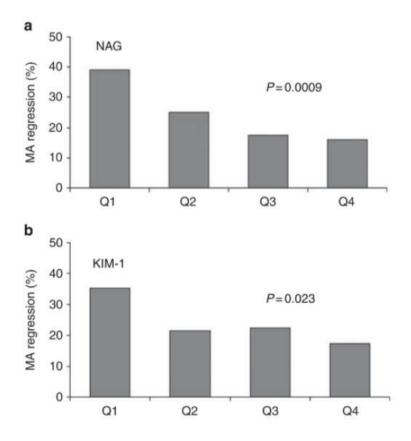


J Patholo 212:209-217, 2007


Kidney Injury Molecule-1 (KIM-1)

	M/F (n)	Age (years)
Control	4/3	62 (28-83)
Diabetic nephropathy	4/4	62 (41–72)
Focal glomerulosclerosis	7/4	39 (14–80)
Hypertension	3/3	51 (22-79)
IgA nephropathy	8/2	26 (4-50)**
Membranous GN	12/5	52 (30-77)
Minimal change	7/4	25 (2-70)*
Mesangial proliferative GN	6/3	31 (5-59)*
Systemic lupus erythematosus	2/5	49 (33–55)*
Acute allograft rejection	4/3	58 (43–67)
Chronic allograft nephropathy	4/4	51 (30-66)
Wegener's granulomatosis	5/3	71 (39–83)

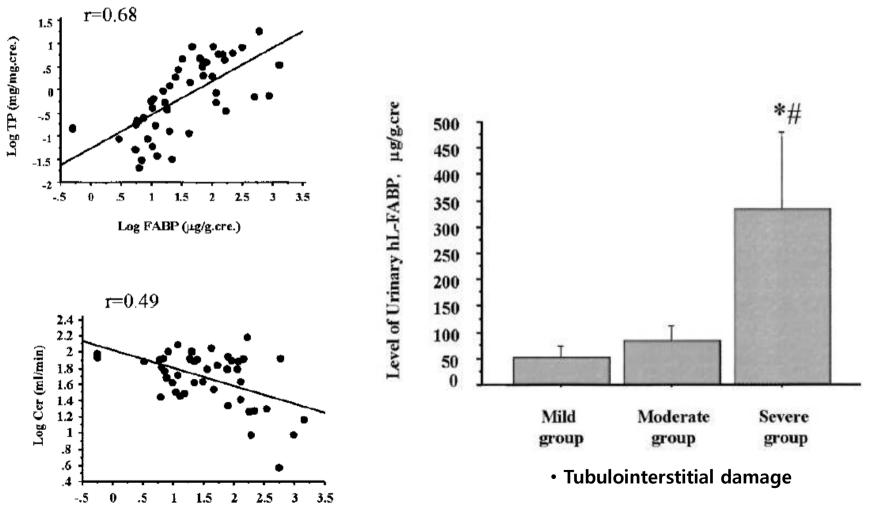
		lar KIM-I Urinary KI = 102) (n = 43		
Parameters	r-Value	p-Value	r-Value	p-Value
Histological paramete	ers			
Tubular KIM-1			0.47	0.002
expression				
MME	0.30	0.002	0.04	NS
FGS	0.22	0.025	-0.17	NS
IF	0.39	< 0.00 l	0.01	NS
Interstitial MØ	0.59	< 0.00 l	0.35	0.025
Glomerular MØ	0.44	< 0.00 I	0.40	0.016
Clinical parameters				
Serum creatinine	0.53	< 0.00	0.036	NS
Creatinine	-0.60	< 0.00	-0.46	0.007
clearance				
eGFR	-0.59	< 0.00 l	-0.37	0.016
Proteinuria	0.12	NS	0.14	NS



KIM-1, not predict the decline in GFR in T1DM with overt nephropathy

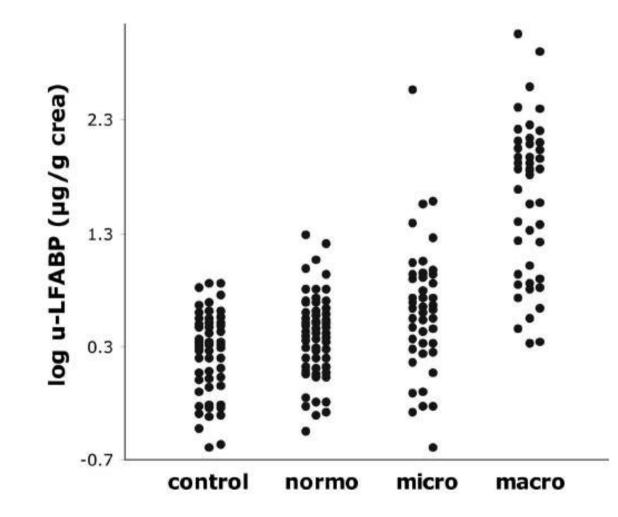
Kidney Int 79:1113-1118, 2011

Regression of microalbuminuria in T1DM is associated with lower levels of urinary KIM-1

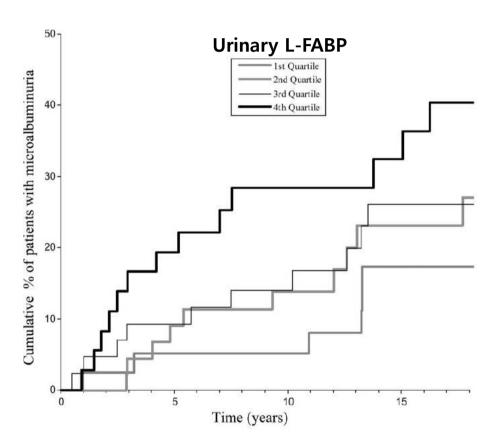

	Crude me	odel Adjusted model		nodel
Biomarkers	OR (95% CI)	<i>P</i> -value	OR (95% CI)	P-value
NAG				
Q1 vs Q4	3.4 (1.5–7.6)	0.003	4.8 (1.9–12.7)	0.0013
Q2 vs Q4	1.8 (0.7–4.1)	0.20	2.3 (0.9–6.3)	0.089
Q3 vs Q4	1.1 (0.5–2.7)	0.81	1.5 (0.5–4.2)	0.45
Q4 REF	1.0 REF		1.0 REF	
KIM-1				
Q1 vs Q4	2.6 (1.2–5.8)	0.019	2.6 (1.1–6.1)	0.03
Q2 vs Q4	1.3 (0.6–3.0)	0.55	1.0 (0.4–2.6)	0.95
Q3 vs Q4	1.4 (0.6–3.2)	0.47	1.3 (0.5–3.4)	0.52
Q4 REF	1.0 REF		1.0 REF	

Liver-type Fatty acid binding protein (L-FABP)

- Free fatty acids (FFAs) bound to albumin, filtered through the glomeruli, and reabsorbed into the proximal tubules.
- FFAs bound to albumin
 - might play a role in the **development of tubulointerstitial damage**.
 - play some role in the progression of tubulointerstitial disease.¹
- FFAs loaded on the proximal tubules are bound to cytoplasmic fatty acidbinding protein (FABP) and transported to mitochondria or peroxisomes, where they are metabolized by β-oxidization.²
- In human proximal tubules, the liver-type FABP (L-FABP) of 14 kd is expressed.³
- L-FABP might be a key regulator of fatty acid homeostasis in the cytoplasm.⁴


¹Kidney Int 62:1628-1637, 2002 ²Biochim Biophys Acta 1081:1-24, 1991 ³Biochem J 288:285-290, 1992 ⁴J Biol Chem 278:21429-21438, 2003

Urinary excretion of L-FABP reflects stress overload on the proximal tubules

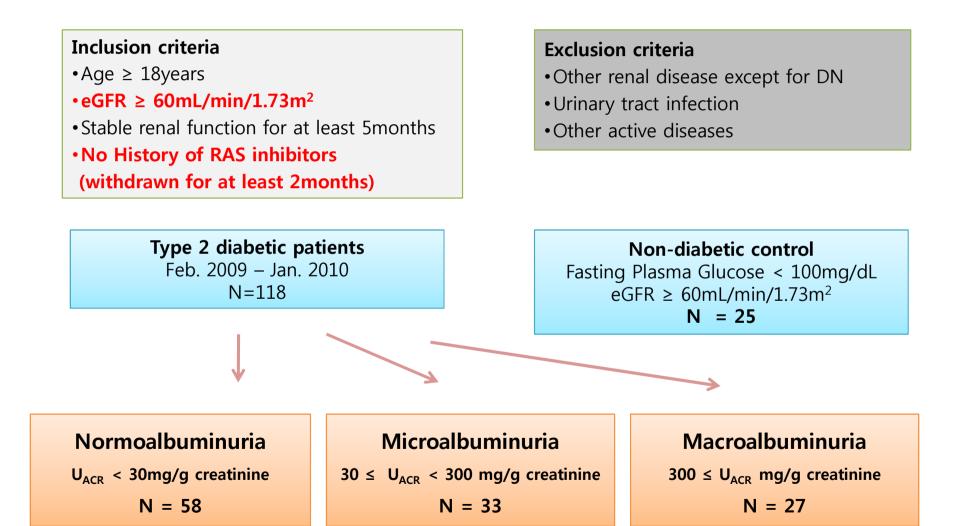

Log FABP (µg/g.cre.)

Increased urinary L-FABP in T1DM

Diabetes Care 32:1684-1688, 2009

Urinary L-FABP predicts progression to nephropathy in T1DM

u-LFABP predicts the development of microalbuminuria when adjusted for known risk factors


	OR	P value
Sex (male)	4.19 (1.62–10.87)	0.003
Age (year)	1.02 (0.99–1.05)	0.274
SBP(mmHg)	2.00 (1.36–2.95)	0.001
A1C (%)	1.03 (0.995–1.06)	0.100
DBP (mmHg)	0.99 (0.94–1.04)	0.758
Log (u-albumin [mg]/24 h)	12.36 (2.58–59.32)	0.002
Log (u-LFABP [ng/ml]/u-Cr)	2.28 (1.14–4.58)	0.021

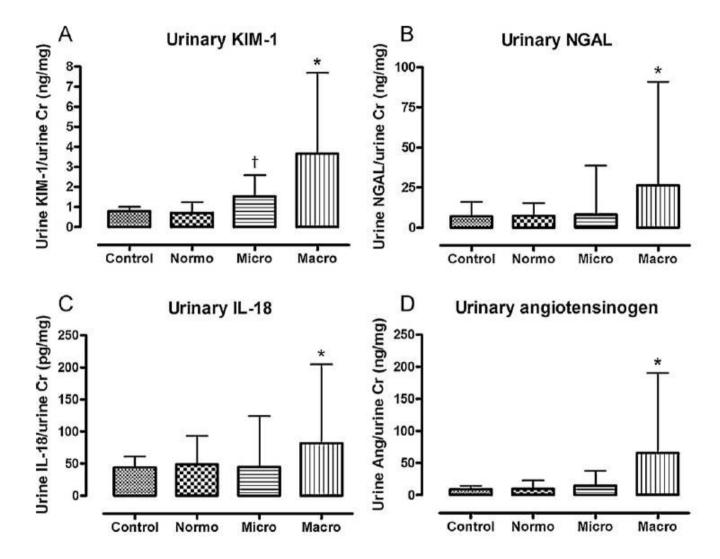
Clinical Implication of Urinary Tubular Markers in the Early Stage of Nephropathy with T2DM

In Type 2 diabetic patients in early course of DN

- To evaluate the association of several urinary tubular markers with albuminuria.
- To evaluate the association of urinary tubular markers with urinary IL-18 and angiotensiogen.

Patients and Methods

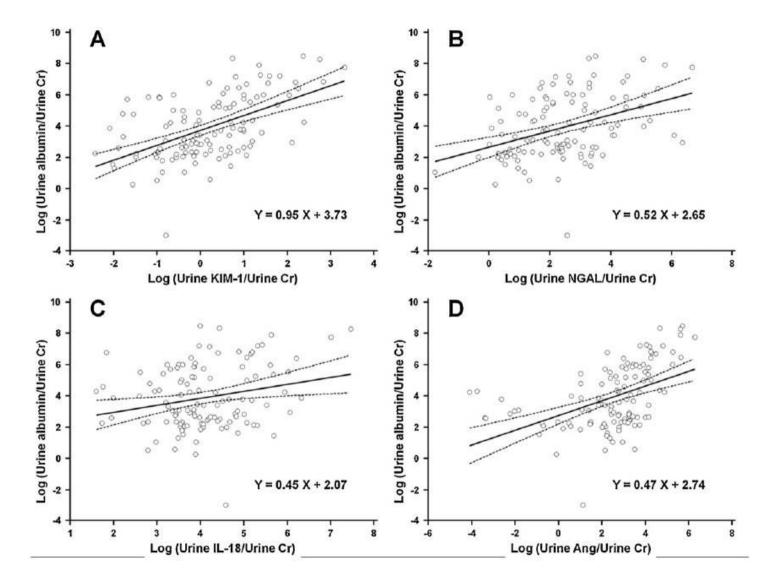
Patients and Methods


- A random spot urine and blood sample were obtained at their clinic visit.
- The medical history and anthropometric measurements were also recorded on the same day.
- The urinary markers were measured by using an ELISA kit from in random spot urine
 - **KIM-1** (R&D systems, Minneapolis, MN, USA)
 - NGAL (R&D systems, Minneapolis, MN, USA)
 - L-FABP (CMIC Co. Ltd, Tokyo, Japan)
 - IL-18 (MBL-Medical&Biological Laboratories, Nagoya, Japan)
 - **Angiotensinogen** (IBL, Gumma, Japan).

Proinflammatory marker

Intrarenal RAS marker

Urinary markers according to albuminuria status



*P < 0.05, compared with nondiabetic control group and all the other groups of diabetic nephropathy.

[†]P < 0.05, compared with nondiabetic control group and normoalbuminuria group.

Ang, angiotensinogen; Cr, creatinine; IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated lipocalin.

Correlations with albuminuria & urinary markers

Ang, angiotensinogen; Cr, creatinine; IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated lipocalin.

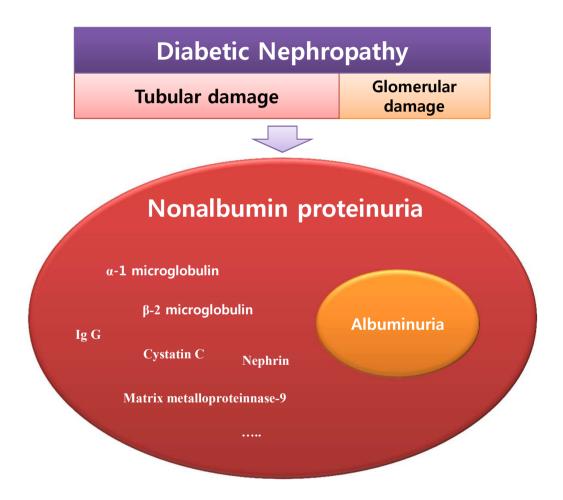
Correlations between urinary markers and albuminuria

Table 2 – Correlations between urinary markers in type 2 diabetic patients.							
	Urine KIM-1/urine Cr	Urine NGAL/urine Cr [*]	Urine IL-18/urine Cr [*]	Urine Ang/urine Cr [*]			
Urine KIM-1/urine Cr	-	0.62 [†]	0.64 [†]	0.48 [†]			
Urine NGAL/urine Cr	0.62*	-	0.56†	0.31 [‡]			
Urine IL-18/urine Cr	0.64†	0.56 [†]	-	0.39 [†]			
Urine Ang/urine Cr*	0.48†	0.31‡	0.391	-			
	Ang, angiotensinogen; Cr, creatinine; IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated lipocalin. * Logarithm-transformed values were used for analysis. † P < 0.001						

Urinary markers	Univari	ate	Multivaria	ate [†]
	Standard β	Р	Standard β	Р
Urine KIM-1/urine Cr [*]	0.54	<0.001	0.48	< 0.001
Urine NGAL/urine Cr	0.40	<0.001	0.33	< 0.001
Urine IL-18/urine Cr	0.23	0.011	0.16	0.072
Urine Ang/urine Cr	0.47	<0.001	0.36	< 0.001

ACR, albumin-to-creatinine ratio; Ang, angiotensinogen; Cr, creatinine; eGFR, estimated glomerular filtration rate; IL-18, interleukin-18; KIM-1, kidney injury molecule-1; LDL, low-density lipoprotein; NGAL, neutrophil gelatinase-associated lipocalin; SBP, systolic blood pressure.

* Logarithm-transformed values were used for analysis.


[†] Adjustment for age, duration of diabetes, SBP, eGFR, LDL cholesterol and HbA1c.

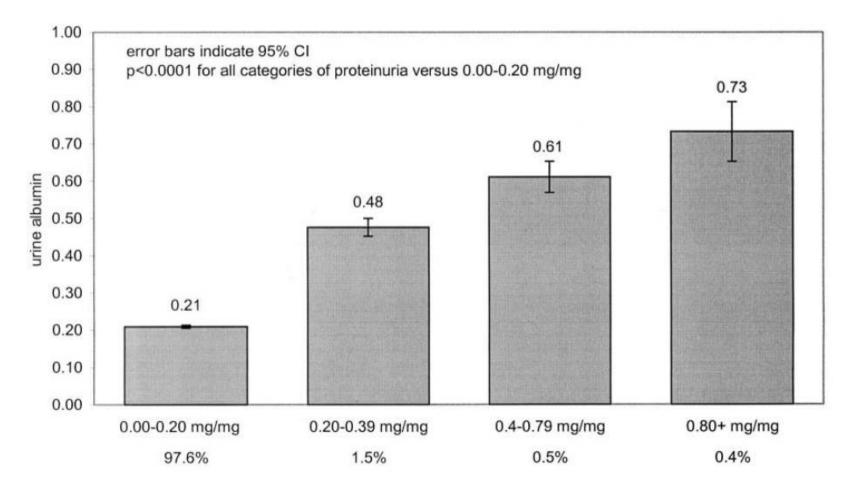
Conclusion

- Urinary tubular markers ,such as KIM-1 and NGAL, may be independent factors associated with albuminuria in patients with conserved eGFR in the early stage of diabetic nephropathy (eGFR ≥60 mL/min/1.73 m²).
- Urinary markers of inflammation and intrarenal RAS activation were associated with the severity of diabetic nephropathy as assessed by albuminuria and significantly correlated with urinary tubular markers.
- Close relationship between chronic inflammation/ intrarenal RAS activation and renal tubular damage in development of diabetic nephropathy.

Urinary cystatin C & Tubular Proteinuria

Nonalbumin proteinuria

Nonalbumin proteinuria (NAP) = total proteinuria – albuminuria
 → are biomarkers of renal damage in various renal disease.


Is there a consistent relationship between urine albumin & total protein?

- At normal levels of protein loss, albumin is a minor component of total urinary protein; as protein loss increases, albumin becomes the most significant single protein present. ¹
- At lower levels of proteinuria the proprotional contribution of albumin tends to be far more variable than at higher levels.²
- The SIGN guidelines suggest that a rough conversion of ACR to PCR ³
 - : X 2, when total protein loss is <1g/24h
 - : X 1.3, while at protein losses exceeding this value.

1. Ann Clin Biochem 46:205-217, 2009 2. Ann Clin Biochem 30:101-103, 1993 3. Scottish Intercollegiate Guideline Network. Diagnosis and Management of Chronic Kidney Disease: Guideline 103

Urine albumin as a proportion of total protein

Among the general Australian adult population (n=10,596)

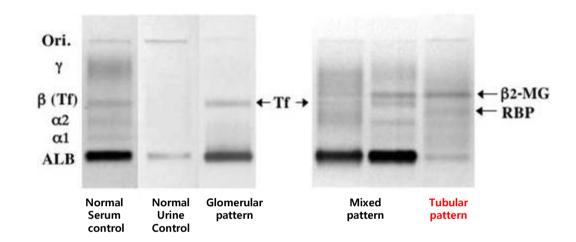
Nephrol Dial Tranplant 18:2170-2174, 2003

What about 'missed' tubular proteinuria?

		Proteinuri	a	
		Positive	Negative	
Albuminuria	Positive Negative	2.2% 0.2%	4.6% 93.0%	6.8% 93.2%
	negative	2.4%	93.0% 97.6%	100.0%

Among the general Australian adult population (n=10,596)

Albuminuria = urine albumin:creatinine ratio $\geq 30 \text{ mg/g}$; proteinuria = protein:creatinine ratio $\geq 0.20 \text{ mg/mg}$. Sensitivity 91.7% (95% CI 87.7–94.5%) and specificity 95.3% (95% CI 94.9–95.7%). Positive predictive value 32.4% (95% CI 29.0–35.8%) and negative predictive value 99.8% (95% CI 99.7–99.9%).


Of those with proteinuria (2.4% of the population, defined as a PCR 23 mg/mmol)

- 92% had albuminuria (defined as an ACR 3.4 mg/mmol);

- 8% (0.2% of the general population) had an ACR within the reference range

Urinary leakage of proteins other than albumin can indicate 'tubular' rather than glomerular damage

The electrophoretic profiles of urinary proteins on cellulose acetate (CA) membrane

Renal histology	Positive	Negative	Total
Urinary protein profil	e: Glomerular pa	ttern	
(Sensitivity 100, Spo	ecificity 85.7)		
Glomerular	79	0	79
Others	3	18	21
	82	18	100
Urinary protein profil	e: Tubular patter	n	
(Sensitivity 100, Spo			
TI injury	2	0	2
Others	5	93	98
	7	93	100
Urinary protein profil	e: Mixed pattern		
(Sensitivity 57.9, Sp	ecificity 100)		
Combination [†]	11	8	19
Others	0	81	81
	11	89	100

[†]Combination of glomerular and tubulointerstitial (TI) injury, which implies glomerular lesion associated with more than 25% distribution of TI injury.

	Urinary protein profile			
Features of renal biopsy	Glomerular	Mixed	Tubular	
Glomerular injury	79	0	0	
Combination of glomerular and TI injury	3	11	5	
25–49% TI injury	3	3	0	
≥50% TI injury	0	8	5	
TI injury	0	0	2	
Total			100	
The <i>kappa</i> statistic: TI, tubulointerstitial.	K =0.76, Z	= 9.46,	<i>P</i> < 0.001.	

Predictive role of NAP on graft loss & death in renal transplant recipients

Proteinuria (g/day)	Number of patients	Urinary albumin excretion (g/day)	Nonalbumin proteinuria (g/day)	Nonalbumin (%)
0	219	19.6 ± 58.3	0	0
0.01 to 0.25	172	37 ± 32	124 ± 44	76 ± 24
0.26 to 0.50	107	116 ± 78	226 ± 80	66 ± 21
0.51 to 0.75	40	210 ± 113	363 ± 107	64 ± 19
0.76 to 1	15	376 ± 156	498 ± 144	57 ± 17
>1	63	1318 ± 855	966 ± 572	44 ± 18

Table 5: Respective predictive value of urinary albumin excretion

 and nonalbumin proteinuria on graft loss

OR	95% CI	p-Value
16.41	7.49–35.97	< 0.0001
29.09	8.80–96.20	< 0.0001
14.58	4.07–52.25	< 0.0001
6.57	3.05–14.16	< 0.0001
	16.41 29.09 14.58	16.417.49–35.9729.098.80–96.2014.584.07–52.25

The aims of the study

- To evaluate the impact of **urinary cystatin C** on the progression of type 2 diabetic nephropathy
- To determine whether **urinary cystatin C** has an association with the decline of GFR in type 2 diabetic patients.
- As well as whether **urinary NAP** has any correlation with urinary cystatin C or has any effect on the decline in GFR.

SUBJECTS AND METHODS

- A prospective observational study / Department of Endocrinology at PNUH
- A total of **264 Korean T2DM** at the **outpatient** clinics (Finally, **237** patients F/U)
- Enrollment: May 2008 and December 2009 / Followed up until March 2012
- The median follow-up period was **29.0 months** (range, 13.0–44.0 months).
- Inclusion criteria:
 - Age \geq 18 years and eGFR \geq 30 mL/min/1.73 m²

• Exclusion criteria:

- Thyroid disorders or who had been medicated within 6 monhts prior to the study
- Active urinary tract infection,
- Renal disease other than diabetic nephropathy,
- Neoplastic disorders,
- Severe liver dysfunction,
- Active or chronic persistent infection or inflammatory disorders (including use of corticosteroid),
- Pregnancy,
- A recent (within 6 months) history of AMI, stroke or occlusive peripheral vascular disease.

SUBJECTS AND METHODS

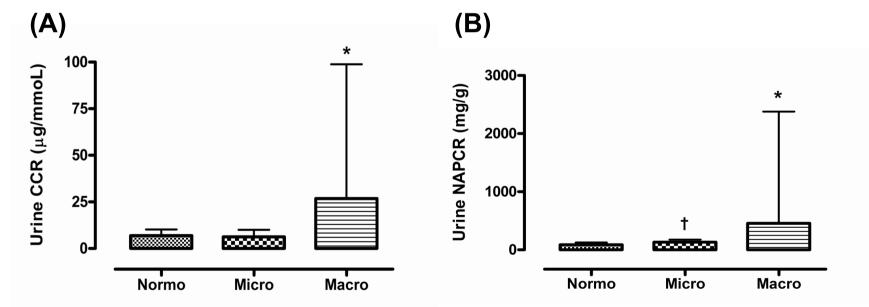
- The serum and urinary cystatin C levels
 - measured by the latex agglutination test

(Modular P800, Roche, Diagnostics, Mannhein, Germany).

* The interassay and intraassay coefficients of variations of cystatin C in our laboratory were as follows: <4.2% and <3.4%, respectively, for serum and <7.9% and <10.1%, respectively, for urine.

Nonalbumin protein-to-creatinine ratio (NAPCR)

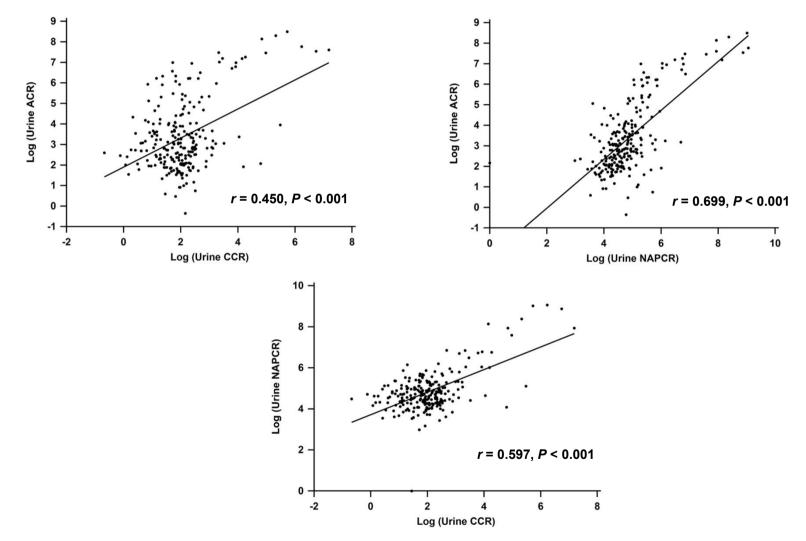
= PCR (protein-to-creatinine ratio)


– ACR (albumin-to-creatinine ratio)

• The lowest detetable level and the coefficient of variation in our laboratory were as follow: for total proteinuria, 0.7 mg/dL and <4.8%, respectively; for albuminuria, 0.2 mg/dL and <7.4%, respectively.

Baseline urinary CCR and NAPCR according to albuminuria

	Normoalbuminuria $(n = 149)$	Microalbuminuria $(n = 58)$	Macroalbuminuria $(n = 30)$	<i>P</i> value
Urine albumin, mg/dL*	0.9 (0.6–1.5)	5.0 (3.0–9.6)§	88.5 (46.2–121.3)§	< 0.001
Urine ACR, mg/g*	11 (7–17)	56 (38-109)§	962 (502–1737)§	< 0.001
Urine cystatin C, mg/L*	0.05 (0.03-0.08)	0.04 (0.02-0.09)	0.13 (0.06-0.56)§	< 0.001
Urine CCR, µg/mmol*	6.9 (4.2-10.2)	6.2 (3.3-10.0)	26.8 (6.2-85.1)§	< 0.001
Urine NAP, mg/dL*	7.7 (5.3-11.4)	10.2 (6.3-14.3)	42.2 (26.7-133.7)§	< 0.001
Urine NAPCR, mg/g*	89 (66–126)	131 (92-173)†	456 (238–2173)§	< 0.001


Table 1—Baseline characteristics of metabolic and laboratory parameters in patients with type 2 diabetes

**P* <0.001 versus the normoalbuminuria and microalbuminuria groups. **P* < 0.001 versus the normoalbuminuria group. CCR, cystatin C-to-creatinine ratio; NAPCR, nonalbumin protein-to-creatinine ratio.

SS Kim et al. Diabetes Care 36:656-661, 2013

Correlations among urinary ACR, CCR and NAPCR

Logarithm-transformed values were used for analysis.

ACR, albumin-to-creatinine ratio; CCR, cystatin C-to-creatinine ratio; PCR, NAPCR, nonalbumin protein-to-creatinine ratio.

SS Kim et al. Diabetes Care 36:656-661, 2013

Correlations between urine CCR and NAPCR with clinical variables

	Urine CCR*					
	Univari	ate	Multivariate			
Variables	Standard β	Р	Standard β	Р		
Duration of diabetes	0.193	0.003	0.121	0.041		
HbA1c	0.201	0.002	0.125	0.033		
SBP	0.188	0.004	0.117	0.045		
Urine ACR*	0.450	< 0.001	0.319	<0.001		
Baseline eGFR	-0.341	< 0.001	-0.189	0.003		
	Urine NAPCR *					
	Univari	Univariate		riate		
Variables	Standard β	Р	Standard β	Р		
Duration of diabetes	0.254	< 0.001	0.132	0.006		
HbA1c	0.251	< 0.001	0.127	0.008		
SBP	0.258	< 0.001	0.141	0.003		
Triglyceride*	0.142	0.029	-0.031	0.520		
Urine ACR*	0.699	< 0.001	0.602	<0.001		
Baseline eGFR	-0.377	< 0.001	-0.108	0.033		

*Logarithm-tranformed values were used for analysis. ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; NAPCR, nonalbumin protein-to-creatinine ratio; SBP, systolic blood pressure.

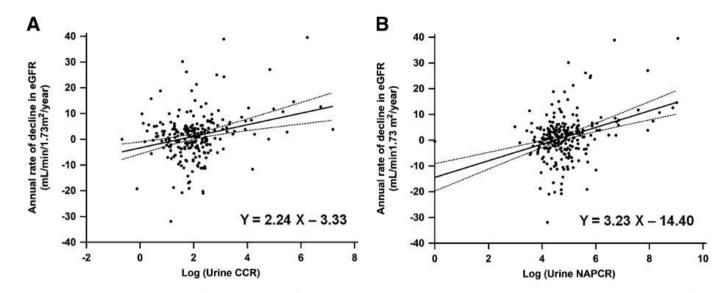


Figure 1—Single regression analysis of the annual rate of the decline in eGFR by using urinary CCR (A) and NAPCR (B). Logarithm-transformed values of urinary CCR and NAPCR were used for analysis.

					Urine CCR			
-	All $(n = 237)$		$eGFR \ge 60 \text{ mL/min/1.73 m}^2$ $(n = 218)$		Normoalbuminuria (n = 149)		eGFR ≥ 60 mL/min/1.73 m ² and normoalbuminuria ($n = 144$)	
Model	Standard β	P value	Standard β	P value	Standard β	P value	Standard β	P value
1	0.272	< 0.001	0.170	0.012	0.114	0.166	0.083	0.321
2	0.254	< 0.001	0.169	0.014	0.137	0.087	0.083	0.310
3	0.260	< 0.001	0.172	0.013	0.146	0.072	0.090	0.272
4	0.160	0.021	0.144	0.031	0.097	0.199	0.084	0.292
					Urine NAPC	R		
	All (<i>n</i> = 237)		$eGFR \ge 60 \text{ mL/min/1.73 m}^2$ $(n = 218)$		Normoalbuminuria $(n = 149)$		eGFR \geq 60 mL/min/1.73 m ² and normoalbuminuria (<i>n</i> = 144)	
Model	Standard β	P value	Standard β	P value	Standard β	P value	Standard B	P value
1	0.361	< 0.001	0.262	< 0.001	0.215	0.009	0.176	0.035
2	0.413	<0.001	0.286	0.001	0.261	0.002	0.202	0.017
3	0.412	< 0.001	0.282	0.001	0.261	0.002	0.201	0.018

Table 2-Multiple regression analysis of the annual rate of decline in eGFR as a dependent variable

Model 1, crude; model 2, adjusted for age and significant clinical parameters including HbA1c, SBP, uric acid, urine ACR, and baseline eGFR; model 3, adjusted for use of RAS inhibitors and lipid-lowering agents; model 4, adjusted for serum cystatin C.

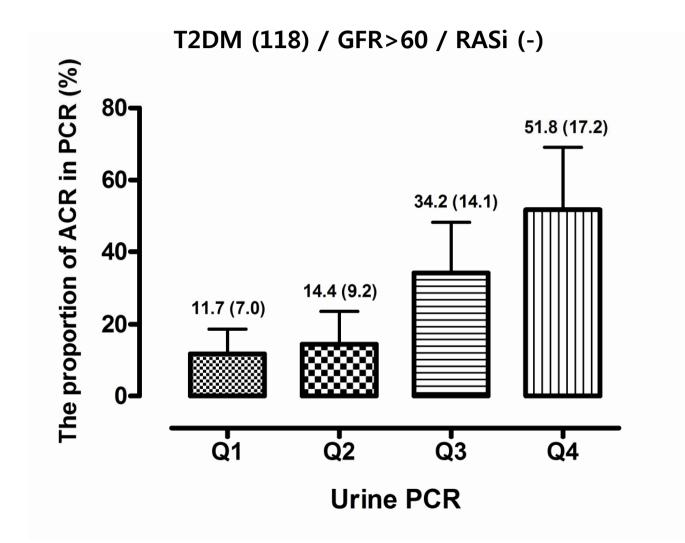
	Univariate analysis		Mult	ivariate analysis* with urine CCR	Multivariate analysis* with urine NAPCR	
Variable	OR	95% CI (P value)	OR	95% CI (P value)	OR	95% CI (P value)
Age, years	1.08	1.03-1.13 (0.002)	-	—		—
SBP, mmHg	1.03	1.01-1.05 (0.012)			_	
HbA _{1c} , %	1.32	1.05-1.66 (0.018)	1.64	1.09-2.46 (0.018)		<u> </u>
Uric acid, mg/dL	1.99	1.53-2.59 (<0.001)	2.70	1.51-4.82 (0.001)	1.69	1.07-2.68 (0.026)
Baseline eGFR, mL/min/1.73 m ²	0.86	0.83-0.91 (<0.001)	0.86	0.84-0.93 (<0.001)	0.87	0.82-0.93 (<0.001)
RAS inhibitor use, yes	27.22	3.64-203.38 (0.001)	15.67	0.75-327.42 (0.076)	33.68	1.92-590.97 (0.016)
Lipid-lowering agent use, yes	1.28	0.57-2.86 (0.548)			—	-
Urine ACR group						
Normoalbuminuria	1	Ref.	1	Ref.		
Microalbuminuria	3.27	1.05-10.19 (0.041)	2.46	0.42-14.36 (0.316)		
Macroalbuminuria	55.61	17.97-172.15 (<0.001)	13.81	2.02-94.35 (0.007)	-	
Urine CCR tertile						
1st tertile	1	Ref.	1	Ref.		
2nd tertile	0.58	0.14-2.53 (0.473)	0.40	0.05-3.12 (0.380)	—	
3rd tertile	7.26	2.62-20.14 (<0.001)	6.85	1.19-39.40 (0.031)	-	50
Urine NAPCR tertile						
1st tertile	1	Ref.		8 	1	Ref.
2nd tertile	2.00	0.18-22.52 (0.575)	—	—	4.08	0.27-61.15 (0.309)
3rd tertile	48.71	6.44-368.43 (<0.001)			29.35	2.93-294.14 (0.004)

Table 3-Logistic regression of development of CKD stage 3 or greater (eGFR <60 mL/min/1.73 m²) at last follow-up

Ref., reference population group. *Multivariate models using the backward likelihood method were adjusted for age, SBP, HbA_{1c}, uric acid, baseline eGFR, urine ACR, RAS inhibitor use, lipid-lowering agent use, and urine CCR and NAPCR.

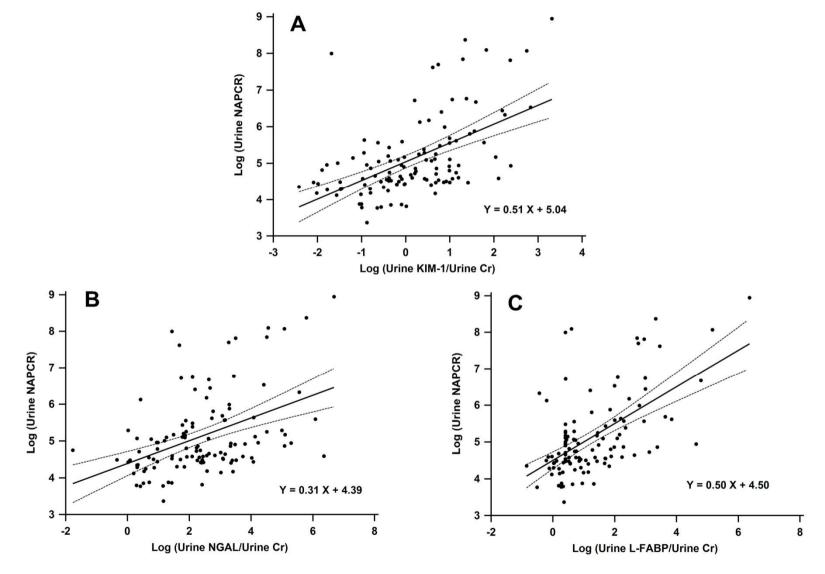
Summary & Conclusion

- Urinary cystatin C and NAP-both clinical tubular damage markerspositively correlated with each other at baseline.
- Both markers were significantly associated with the annual decline of in eGFR in type 2 diabetic nephropathy.
- In particular, both tubular damage makers affected a decline in eGFR at the early stage of nephropathy in type 2 diabetic patients (eGFR ≥60 mL/min/1.73 m²).
- Urinary NAP affected eGFR decline in patients with both eGFR ≥60 mL/min/1.73 m² and normoalbuminuria, although urinary cystatin C did not reach to the statistical significance.
- In addition, the increased levels of the 2 markers were also associated with CKD stage 3 at the last follow-up.


Summary & Conclusion

- It is suggested that **urinary cystatin C and NAP** along with albuminuria
 - may be sensitive and specific markers for predicting renal impairment in type 2 diabetic patients
 - may help understand the role of tubular damage in pathophysiologic mechanisms of the development and progression of type 2 diabetic nephopathy.

Urinary NAP for Tubular Marker



Urinary ACR as a proportion of PCR according quartile groups of urinary PCR

SS Kim et al. Unpublished data 2013

. Single regression analyses of urinary NAPCR in relation to urinary tubular markers

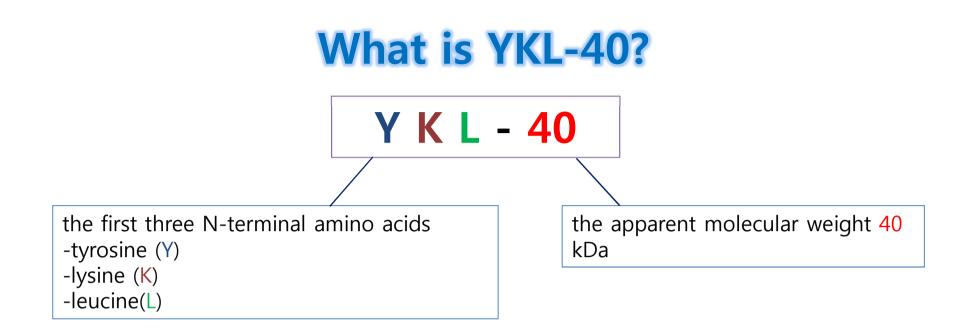
SS Kim et al. Unpublished data 2013

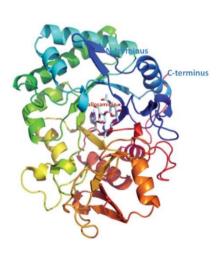
Multiple regression analysis of urinary NAPCR as a dependent variable

	All patients (n=118)								
	Urine KIN	1-1/Cr	Urine NGAL/Cr		Urine L-FABP/Cr				
Model	Standard β	Р	Standard β	Standard β <i>P</i>		Р			
1	0.543	<0.001	0.442	<0.001	0.580	<0.001			
2	0.530	<0.001	0.406	<0.001	0.536	<0.001			
3	0.170	0.010	0.142	0.015	0.262	<0.001			
	Normoalbuminric patients (n=58)								
	Urine KIM-1/Cr		Urine NGAL/Cr		Urine L-FABP/Cr				
Model	Standard β	Р	Standard β	Р	Standard β	Р			
1	0.292	0.026	0.372	0.004	0.429	0.001			
2	0.272	0.065	0.345	0.010	0.430	0.001			
3	0.216	0.161	0.302	0.030	0.430	0.001			

Model 1, Crude; Model 2, adjusted for significant variables including age, duration of diabetes, SBP, eGFR, LDL cholesterol, and HbA1c; Model 3, adju sted for significant variables and ACR. ACR, albumin-to-creatinine ratio; Cr, creatinine; eGFR, estimated glomerular filtration rate; KIM-1, kidney injury molecule-1; L-FABP, liver-type fatty acid-binding protein; LDL, low-density lipoprotein; NAPCR, nonalbumin protein-to-creatinine ratio; NGAL, neutrophi I gelatinase-associated lipocalin; SBP, systolic blood pressure.

Summary & conclusions


- The proportional contribution of albumin to total protein was relatively small in lower quartile group.
- Urinary NAP independently correlated with several urinary tubular markers after adjusting clinical confounding factors including albuminuria in type 2 diabetic patients with eGFR ≥60 mL/min/1.73 m².
- Urinary NAP also remained significantly associated with some tubular markers in only normoalbuminuric patients.
- Urinary NAP as indicator for tubular damage, beyond albuminuria, could be used as early biomarker to detect the development and progression in diabetic nephropathy based on clinical practice.


Markers of Inflammation

Some urinary biomarkers of inflammation and endothelial dysfunction associated with type 2 diabetes

- Adiponectin
- Angiotensin-converting enzyme
- Angiotensinogen ?
- Endothelin-1
- Fibrinopeptide A
- Interleukin-6
- Monocyte chemoattractant protein-1
- Nitric oxide
- Orosomucoid/*α-1 acid glycoprotein*
- Transforming growth factor- β
- Thrombomodulin
- Thromboxane
- Tumour necrosis factor-α
- Vascular endothelial growth factor

Clinical implication of plasma and urine YKL-40, as a proinflammatory biomarker, on early stage of nephropathy in T2DM

- In vitro secreted by macrophages during late stages of differentiation & by activated macrophages
- *In vivo* expressed in human VSMCs in adventitial vessels & in subpopulations of macrophages and VSMCs in different tissues with inflammation and extracellular matrix remodeling as in atherosclerotic plaques

In vitro secretion by

Neutrophils Activated macrophages Macrophages in late stage of differentiation Differentiated VSMCs Arthritic chondrocytes Fibroblast-like synovial cells

Acuteinfectious conditions

Purulent meningitis Pneumonia E.coli endotoxemia

Chronic inflammatory conditions

RA Osteoarthritis SLE IBD Sarcoidosis

Conditions characterized by fibrosis

Alcoholic cirrhosis

Liver disease characterized by fibrosis

In vivo secretion by

Macrophages and VSMCs in atherosclerotic plaques Macrophages in inflamed synovial membranes Macrophages in acute bacterial infections VSMCs in adventitial vessels CD68+ macrophages/Giant cells in Giant cell artheritis

Cancers

Glioblastoma Myeloid leukaemia cell lines Breast Colon/rectum Ovary Lung Prostate	mia cell lines	Osteosa	coma	
Breast Colon/rectum Ovary Lung	mia cell lines	Gliobla	toma	
Colon/rectum Ovary Lung		Myeloid	leukaemia cell lines	
Ovary Lung		Breast		
Lung		Colon/r	ctum	
		Ovary		
Prostate		Lung		
		Prostate		
Kidney		Kidney		
Melanoma		Melano	na	
		Conditio	ns characterized by si	abelinical inflammation
Conditions characterized by subclinical inflammation	racterized by subclinical inflammation	Atheros	elerosis/atheroscleroti	c plaques

Insulin resistance/T2D

Inflamm Res 55:221-227, 2006

YKL-40 & CAD

• Serum YKL-40 levels in patients with coronary artery disease

Coron Artery Dis 18:391-396, 2007

• YKL-40 a new biomarker in patients with acute coronary syndrome or stable coronary artery disease

Scand Cardiovasc J 42:295-302, 2008

• Serum levels of YKL-40 increases in patients in patients with acute myocardial infarction

Coron Artery Dis 19:257-263, 2008

- Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease *Atherosclerosis 210:590-595, 2010*
- Increased YKL-40 expression in patients with carotid atherosclerosis Atherosclerosis 211:589-595, 2010
- High serum YKL-40 concentration is associated with cardiovascular and allcause mortality in patient with stable coronary artery disease *Eur Heart J 30:1066-1072, 2009*

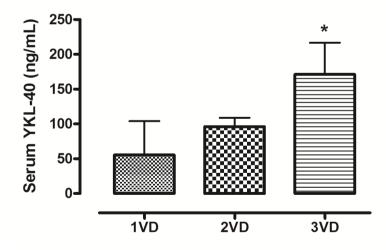
YKL-40 & DM

• YKL-40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance

Inflamm Re 55"53-59, 2006

• Plasma YKL-40; A BMI-Independent Marker of Type 2 Diabetes

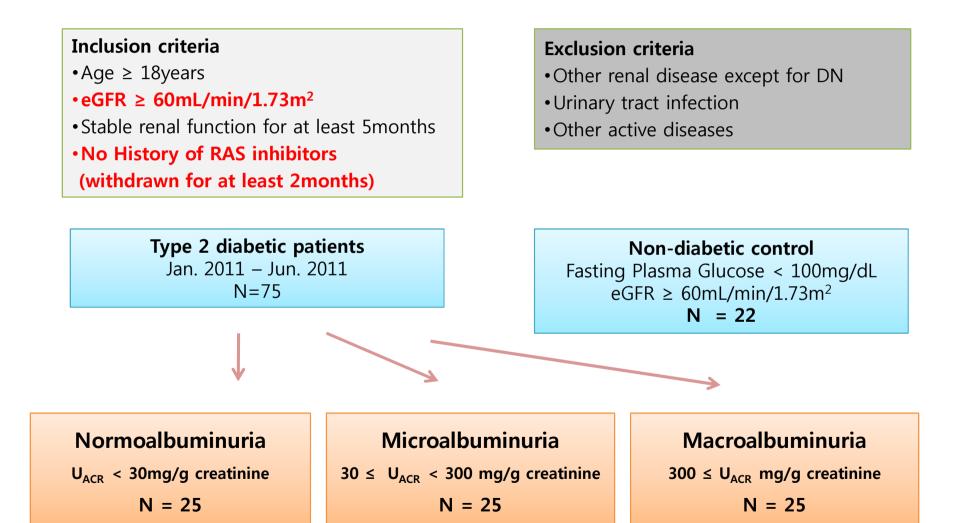
Diabetes 57:3078-3082, 2008


 Increased Circulating and Visceral Adipose Tissue Expression Levels of YKL-40 in Obesity-Associated Type 2 Diabetes Are Related to Inflammation: Impact of Conventional Weight Loss and Gastric Bypass

J Clin Endocrionol Metab 96:200-209, 2011

• YKL-40, a Marker of Inflammation and Endothelial Dysfunction, Is Elevated in Patients With Type 1 Diabetes and Increases With Levels of Albuminuria *Diabetes Care 32:323-328, 2009*

Increased serum YKL-40 level are related to angiographic severity and extent of CAD in patients with T2DM


- •Serum YKL-40 was measured in 78 patients (including 38 patients with T2DM) with stenosis of > 50% of luminal diameter in at least one of coronary artery in coronary angiography.
- Coronary angiography from Pusan National University Hostpital between Jun 2009 and May 2011.
- The atherosclerotic burden was obtained by three independent angiographic scores: the severity, Gensini score (GS) and Extent score (ES).

	Gensini score		Extent	Extent score		
	Standard β	Р	Standard β	Р		
Model 1	0.329	0.003	0.380	0.001		
Model 2	0.325	0.006	0.343	0.004		
Model 3	0.317	0.009	0.330	0.007		
Model 4	0.262	0.040	0.296	0.024		

Model 1, crude; Model 2, adjusted for age and sex; model 3, adjusted for history of antihypertensive, lipid-lowering and anti-platelet agents; model 4, adjusted for clinical parameters.

Patients and Methods

SS Kim et al. J Diabetes Complications 26:308-312, 2012

Patients and Methods

- ✓ A random spot urine and blood sample were obtained from subjects at the clinic visit.
- ✓ Plasma and urine concentrations of YKL-40 were analyzed by a commercial ELISA kit. Human Chitinase 3-like 1 immunoassay kits were purchased from R&D Systems, Minneapolis, MN, USA.
- eGFR : calculated using the Modification of Diet in Renal Disease (MDRD) formula
 - MDRD = 186 × (serum creatinine [mg/dL])-1.154 × (age in years)-0.203
 - correction factor of 0.742 for women
- ✓ **FeYKL-40** : calculated according to the formula
 - FeYKL-40 = (urine YKL-40 [ng/mL] × serum Cr [mg/dL])/(plasma
 YK-40 [ng/mL] × urine Cr [mg/dL]) × 100

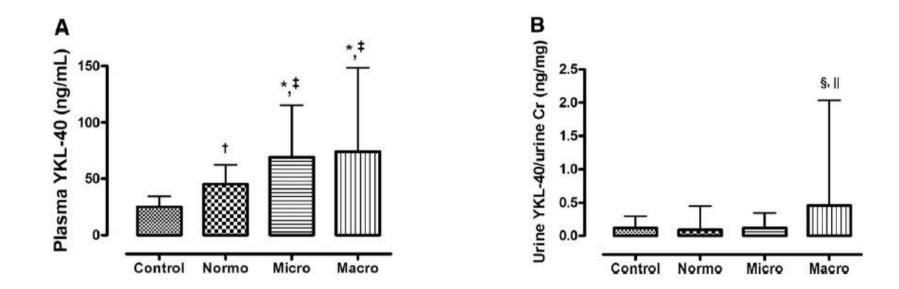
	Nondiabetic control $(n=22)$	Type 2 diabetic patients			Р
		Normoalbuminuria $(n=25)$	Microalbuminuria $(n = 25)$	Macroalbuminuria $(n=25)$	value
Sex, male/female	13/9	11/14	10/15	12/13	0.599
Age, years	52.4 ± 5.8	55.6 ± 11.1	57.0 ± 11.6	56.0 ± 9.8	0.407
BMI, kg/m ²	23.5 ± 2.9	23.8 ± 3.5	23.6 ± 3.8	22.9 ± 2.8	0.790
Duration of diabetes, years	-	6.7 ± 5.9	8.7 ± 5.6	9.6 ± 7.1	0.254
SBP, mm Hg	120.1 ± 15.0	125.1 ± 13.1	126.4 ± 14.6	133.4 ± 21.0^{a}	0.049
DBP, mm Hg	74.6 ± 8.2	77.7 ± 11.1	79.4 ± 12.1	81.6 ± 12.2	0.191
HbA1c, %	-	7.4 ± 1.5	8.5 ± 1.5^{c}	$9.0 \pm 2.5^{\circ}$	0.001
eGFR [*] , ml/min/1.73 m ²	85.6 ± 10.0	94.5 ± 17.9	98.2 ± 22.3	90.7 ± 19.8	0.123
Total cholesterol, mg/dl	197.0 ± 32.9	192.5 ± 39.3	189.6 ± 36.3	206.1 ± 46.2	0.483
LDL cholesterol, mg/dl	130.5 ± 31.7	117.4 ± 31.6	120.2 ± 33.3	129.7 ± 60.7	0.604
HDL cholesterol, mg/dl	54.6 ± 13.9	45.4 ± 16.1	48.0 ± 11.1	56.2 ± 24.2	0.091
Triglyceride, mg/dl [†]	126.0 (62.0-167.8)	147.0 (114.0-254.0)	144.0 (88.0-220.0)	151.0 (111.0-245.5)	0.142
CRP, mg/dl [†]	0.05 (0.03-0.10)	0.06 (0.03-0.17)	0.07 (0.04-0.26)	0.06 (0.03-0.23)	0.428
Plasma YKL-40, ng/ml [†]	25.0 (17.0-34.1)	45.1 (31.9-62.3) ^a	68.9 (44.2-115.4) ^{b,c}	74.0 (46.6-148.2) ^{b,c}	< 0.001
Urine YKL-40/urine Cr, ng/mg [†]	0.12 (0.02-0.30)	0.09 (0.04-0.45)	0.12 (0.07-0.35)	0.46 (0.24-2.03) ^{b,c,e}	< 0.001
FeYKL-40, % [†]	0.004 (0.001-0.013)	0.003 (0.001-0.015)	0.001 (0.001-0.004)	0.004 (0.003-0.015)	0.055
Antihypertensive medication, n (%)	-	5 (20.0)	5 (20.0)	12 (52.2) ^{c, e}	< 0.001
Lipid lowering agent, n (%)	-	11 (44.0)	7 (28.0)	7 (28.0)	0.383
CVD, n (%)	-	1 (4.0)	5 (20.0)	4 (16.0)	0.223
Diabetic retinopathy, n (%)	-	7 (28.0)	11 (44.0)	$16 (64.0)^d$	< 0.001

Clinical parameters of healthy control subjects and type 2 diabetic patients according to albuminuria status.

Data are expressed as means \pm SD for parametric variables and median (interquartile range) for nonparametric variables. BMI, body mass index; CRP, C-reactive protein; Cr, creatinine; CVD, cardiovascular disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; Fe, fractional excretion; Hdl, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure.

* Calculated by Modification of Diet in Renal Disease equation.

[†] Logarithm-transformed values were used for comparison.


^a P<0.05 vs. control.

^b P<0.001 vs. control.

^c P<0.05 vs. normoalbuminuria.

^d P=0.001 vs. normoalbuminuria.

e P<0.05 vs. microalbuminuria.

Correlations between plasma YKL-40 level with clinical variables in type 2 diabetic Correlations between urine YKL-40 level with clinical variables in type 2 diabetic patients.

patients.

	Univariate		Multivariate	
	Standard β	Р	Standard β	Р
Age ACR [*]	0.192	0.099	0.215	0.038
	0.309	0.007	0.273	0.010
Triglyceride [*]	0.385	0.001	0.360	0.001

* Logarithm-transformed values were used for analysis. ACR, albumin-tocreatinine ratio.

	Univariate		Multivariate	
	Standard β	Р	Standard β	Р
HbA1c	0.260	0.024	0.264	0.021
ACR*	0.362	0.001	0.229	0.042
CRP	0.205	0.080	-	-
Triglyceride [*]	0.309	0.007	0.331	0.003

* Logarithm-transformed values were used for analysis. ACR, albumin-tocreatinine ratio.

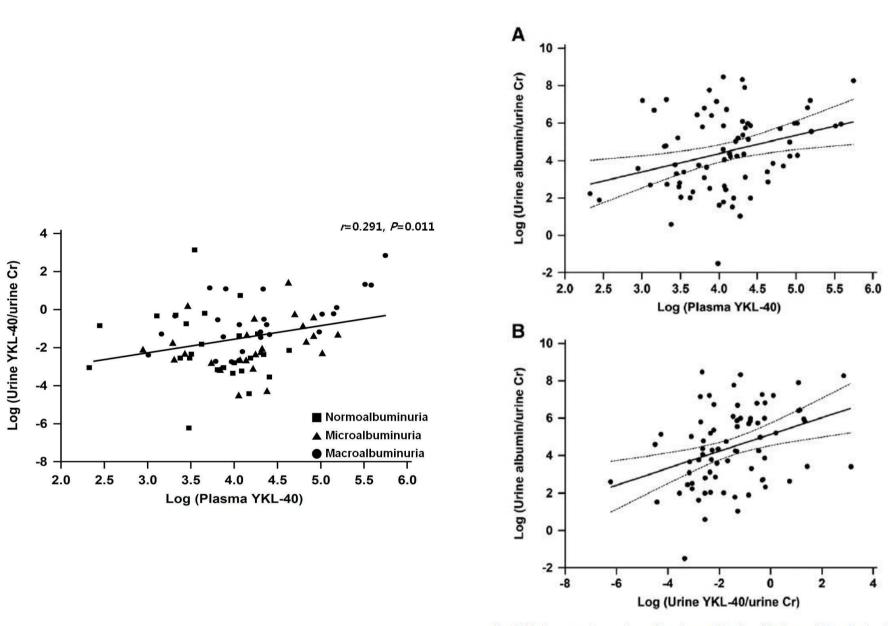


Fig. 2. Single regression analyses for urinary albumin with plasma (A) and urine (B) YKL-40. Logarithm-transformed values were used for analysis. Cr, creatinine.

SS Kim et al. J Diabetes Complications 26:308-312, 2012

Model	Plasma YKL-40		Urine YKL-40	
	Standard β	Р	Standard β	Р
Model 1	0.309	0.007	0.362	0.001
Model 2	0.339	0.004	0.366	0.001
Model 3	0.330	0.004	0.347	0.002
Model 4	0.397	< 0.001	0.238	0.037
Model 5	0.359	0.001	0.128	0.241

Multiple regression analysis of urinary ACR as a dependent variable in type 2 diabetic patients.

Model 1, crude; model 2, adjusted for age and sex; model 3, adjusted for previous cardiovascular disease and history of antihypertensive and lipid-lowering agents; model 4, adjusted for significant clinical parameters including duration of diabetes, SBP, eGFR, LDL cholesterol, HbA1c, and CRP; model 5, adjusted for corresponding plasma or urine YKL-40. ACR, albumin-to-creatinine ratio; CRP; C-reactive protein; eGFR, estimated glomerular filtration rate; LDL, low-density lipoprotein; SBP, systolic blood pressure.

Conclusion

- Plasma YKL-40 measurement might become a useful and noninvasive tool for early incipient diabetic nephropathy as well as for the evaluation of renal involvement of type 2 diabetic patients.
- Although urinary YKL-40 has a limited role in early development of diabetic nephropathy in this study, further study is need to evaluate in whole spectrum of diabetic nephropathy including patients with moderate to severe decrease of GFR.
- YKL-40, as a proinflammatory marker, might play an important role in the development of early diabetic nephropathy with relatively conserved eGFR.

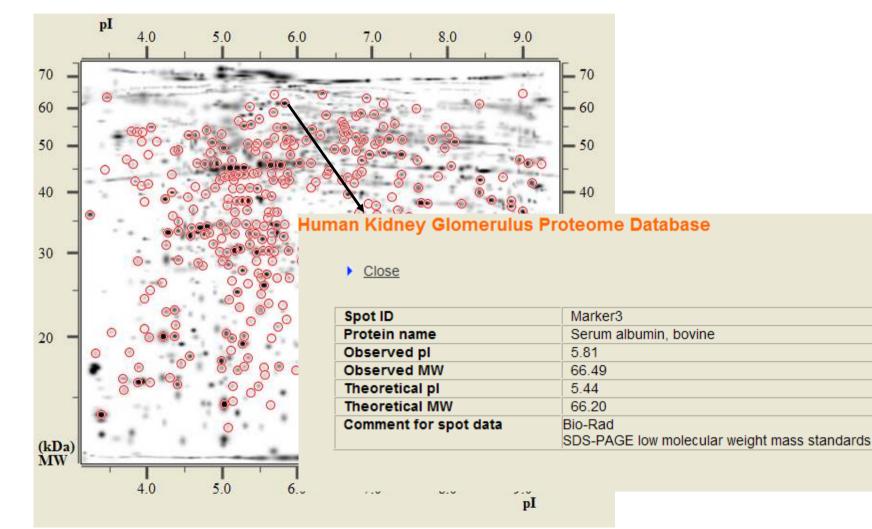
Urine biomarker discovery: the furture

2 principal approaches

- the study of candidate biomarkers (usually tubular proteins, cytokines, growth factors and inflammatory mediators) in specific diseases where laboratory studies have suggested a pathological link
- biomarker discovery studies in which urine is screened for disease-associated proteins using an array of technologies, predominantly based on mass spectrometry

The Human Kidney and Urine Proteome Project (www.hkupp.org/)

Home


About us	Meetings	Links
Standardization	Database	What's New
Kidney Glomerulus Tubules Urine Normal "A tentative standard protocol for urine collection and storage" (MEW) Call for public opinions: info@hkupp.org Proteinuric	Kidney Glomerulus 2DGE-LC-Based Proteomics 2DGE-Based Proteomics Proximal Tubule Distal Tubule Collecting Duct Rat IMCD Rat IMCD Phosphoprotein Others	 March 10, 2011 HKUPP sympohsium will be held on July 30, 2011 at Toki Messe, Niigata, JAPAN as an International Satellite symposium of 2011 Annual Meeting of Japanese Proteomics Society. November 10, 2010 The HUPO 10th Annual World Congress will be held
 Exosome 	Transcriptomics & Proteomics Urine	on September 4-7, 2011 at Geneva Palexpo, Genova, Switzerland. IMPORTANT DATES
Proteomics	 Normal 	Submissions of abstrancts from 1 December 2010 to 16
2DEGE LC-MS/MS CE-MS	 Proteinuric Exosome 	March 2011 . A HKUPP symposium has been scheduled and the Symposists may be selected from Abstracts.
SELDI-TOF MS	Collaborations	Cymposisto may be selected nom Abstracts.

Human Proteome Organisation Human Protein Atlas HUPO Plasma Proteome Project PSI

Past News

The Human Kidney and Urine Proteome Project (www.hkupp.org/)

Glomerulus – 2DGE-Based Proteomics

Overall Summary

- Urinary markers easily accessible in a non-invasive manner.
- The onset and level of **albuminuria** has been considered as both a prognostic biomarker and a surrogate end point of progressive diabetic nephropathy
- Microalbuminuria has several limitations for biomarkers of diabetic nephropathy. We have also need for more sensitive and specific biomarker than urinary albumin !
- Recently numerous studies have been done to explore the biomarkers for diabetic nephropathy.
- Especially, **urinary tubular markers** have clinical meaning as biomarkers of diabetic nephropathy.
- Urinary NAP may reflect the summation of tubular protein and easily be measured in real clinical practice.
- **Urinary NAP,** along with albuminuria, may be sensitive and specific markers for predicting renal impairment in type 2 diabetic patients.

