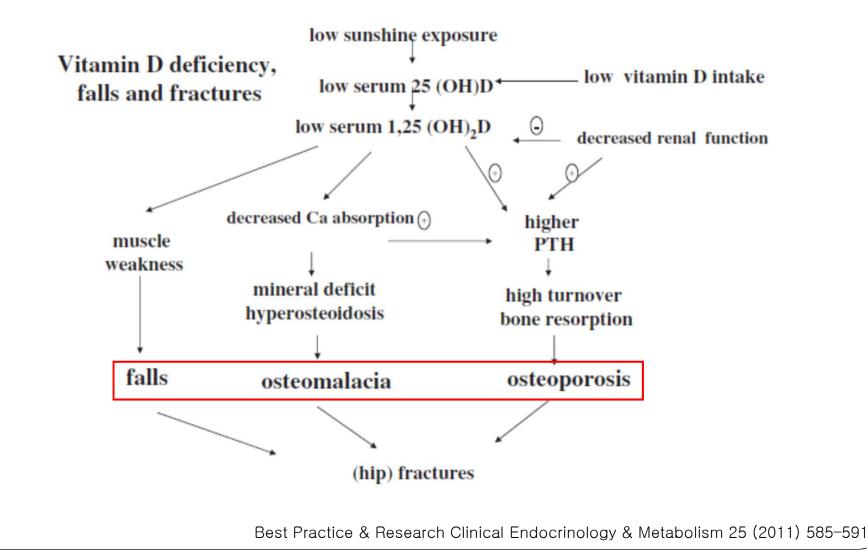
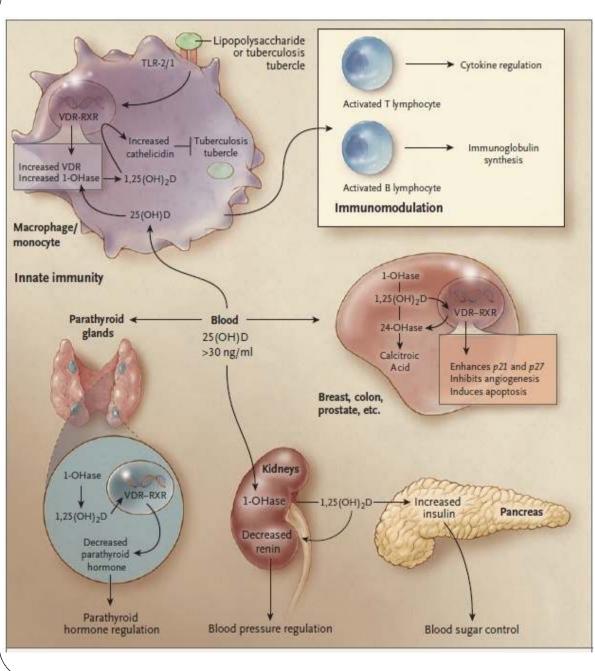


Overview

- Introduction: vitamin D
- Definition of vitamin D status
- Vitamin D status in Korea and other countries
- Determinants of vitamin D status
- Strategies to improve vitamin D status
- Conclusion

Introduction: vitamin D



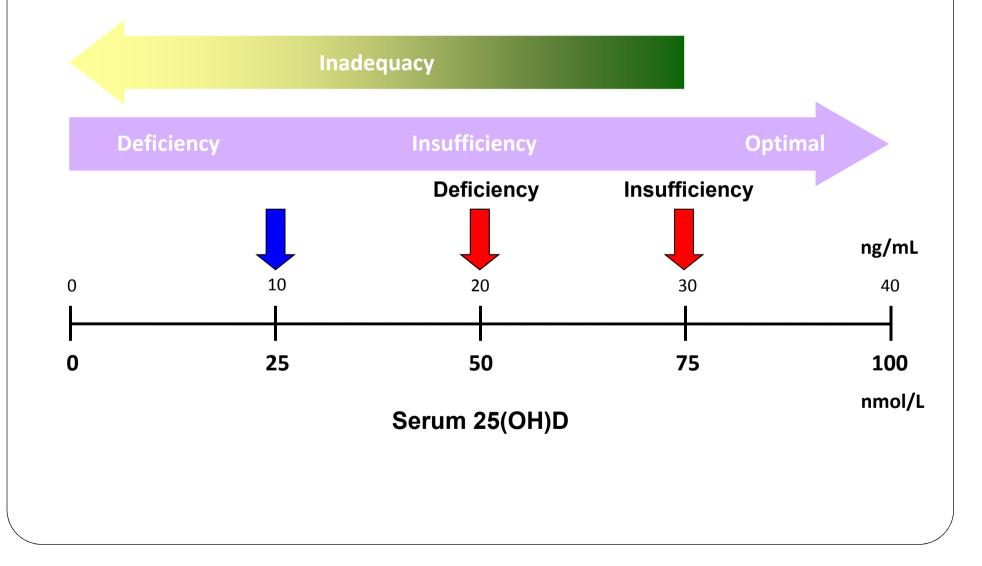


Vitamin D action on bone and mineral metabolism

Holick et al. N Engl J Med 357: 266, 2007/

Vitamin D deficiency

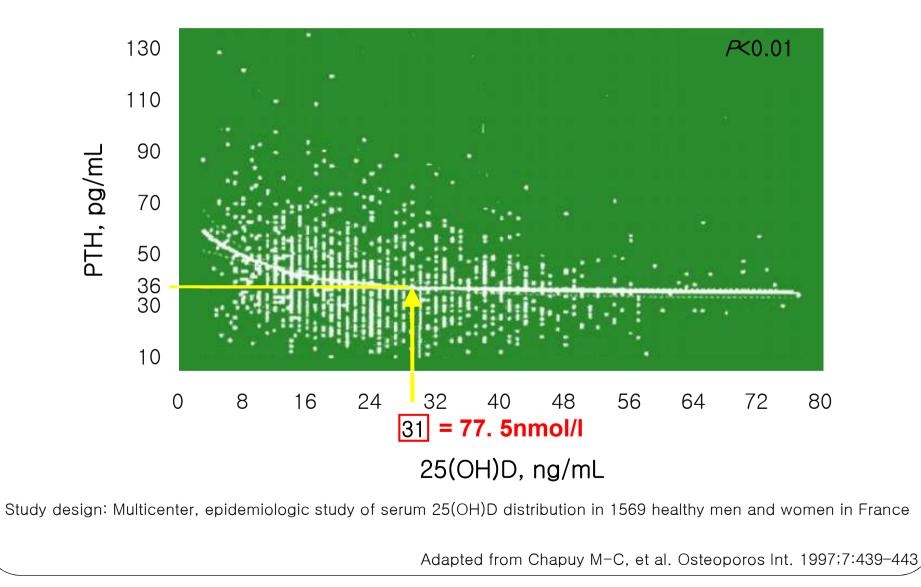
Non-skeletal action of vitamin D

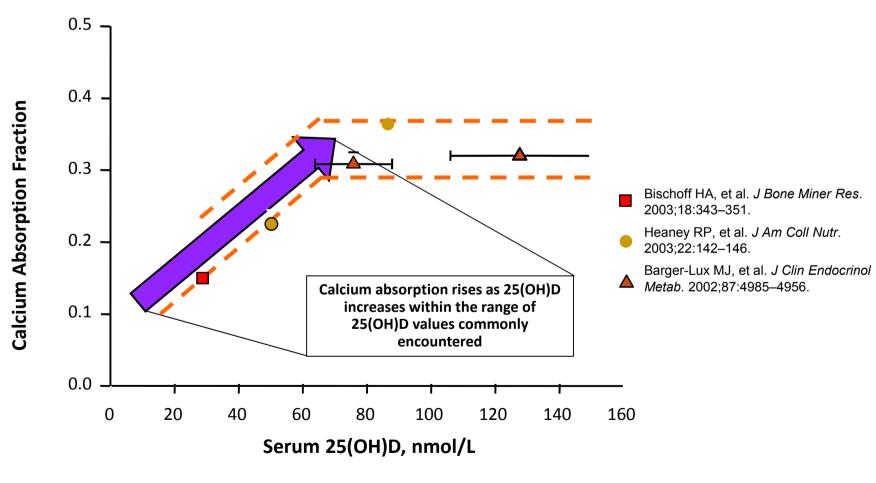

Vitamin D deficiency
Cardiovascular disease
Diabetes mellitus

- Concor
- > Cancer
- Autoimmune diseases
- Infection

Holick et al. N Engl J Med 357: 266, 2007

Definition of vitamin D status

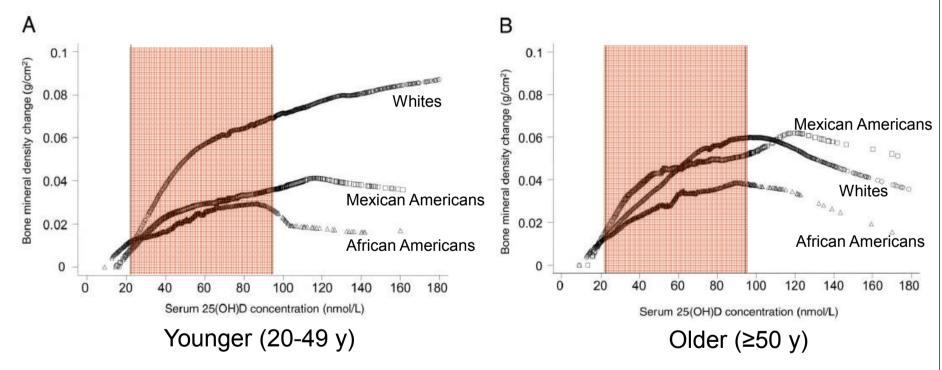

25(OH)D continuum controversy


Guidelines from professional societies

- International workshop on vitamin D (2007)
 Minimum desirable 25(OH)D is <u>50 nmol/l</u>
- Osteoporosis Canada (2010)
 >25(OH) level should be at least <u>75 nmol/l</u>
- International Osteoporosis Foundation (IOF) (2010)
 A target level of 25(OH)D of <u>75 nmol/l</u>
- Institute of Medicine (IOM) (2011)
 > 25(OH)D above the <u>50 nmol/l</u> is needed for good bone health for practically all individuals

Serum 25(OH)D and PTH

Serum 25(OH)D and calcium absorption

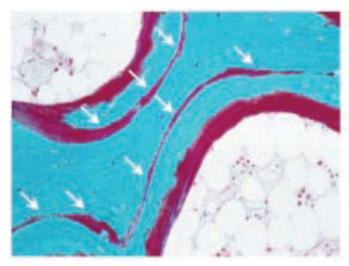


Calcium absorption plateaus at serum 25(OH)D levels ≥ 80 nmol/l

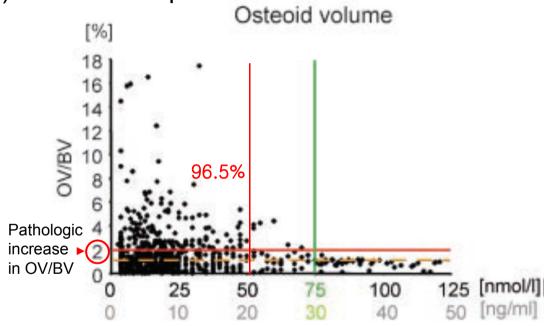
Adapted from Heaney RP. Am J Clin Nutr. 2004;80(suppl):1706S–1709S

Serum 25(OH)D and BMD

The association between serum 25(OH)D and hip BMD among 13,432 subjects
 The third National Health and Nutrition Examination Survey (NHANES III)

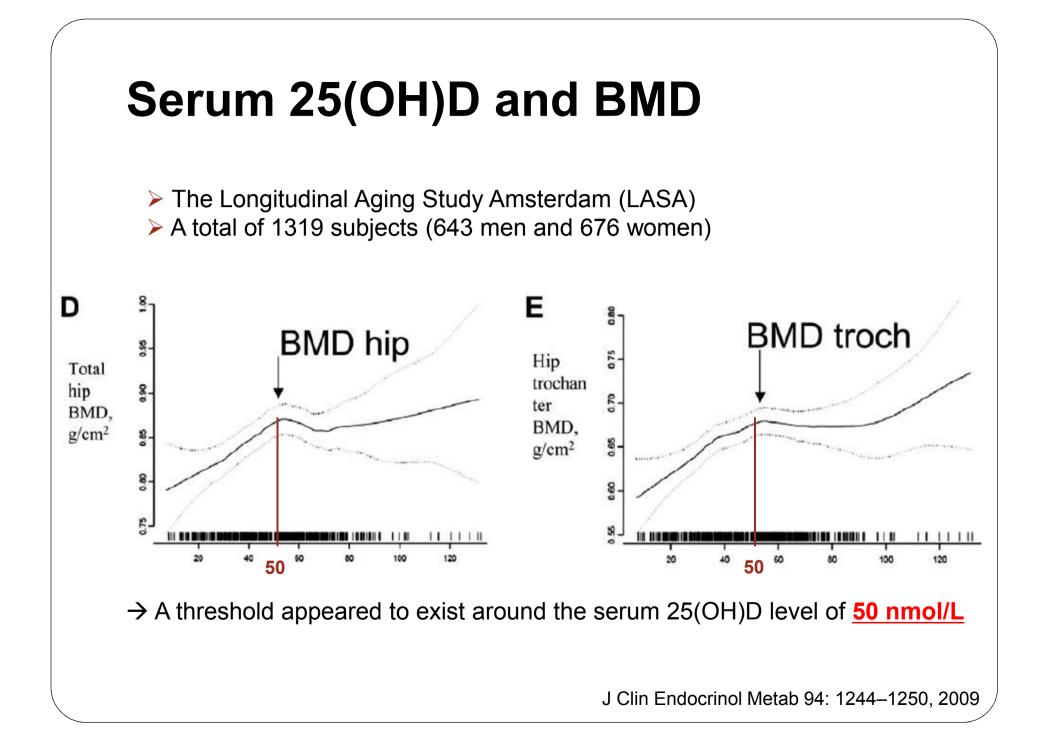


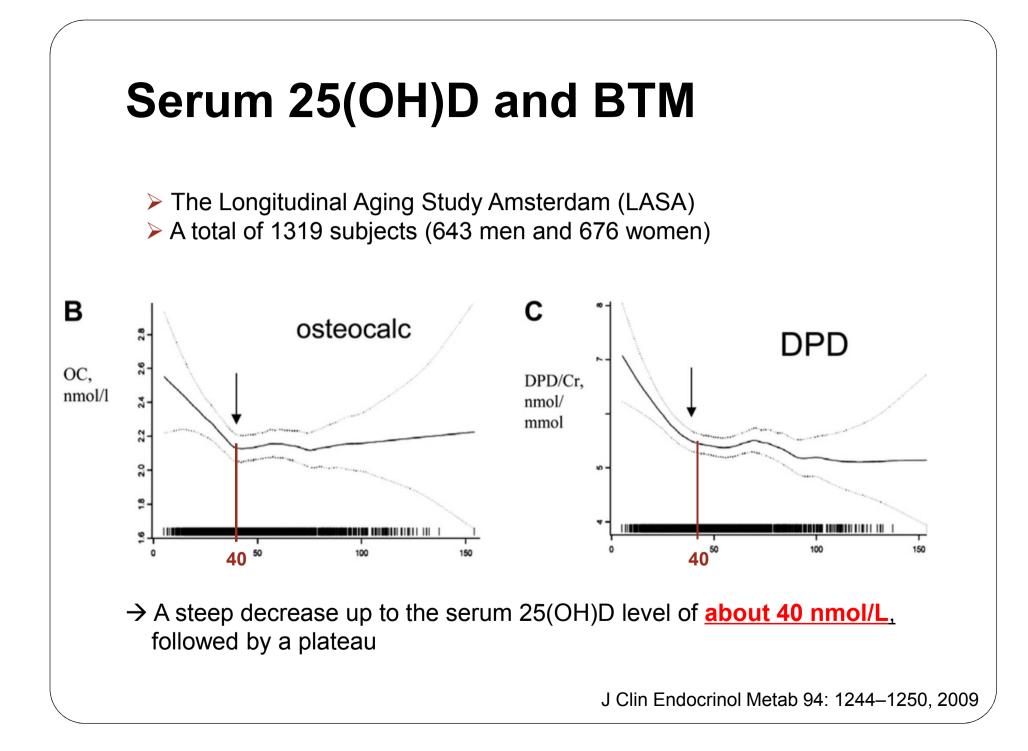
→ Higher 25(OH)D was associated with higher BMD throughout the reference range of 22.5 to 94 nmol/L In younger whites and younger Mexican American, higher 25(OH)D was associated with higher BMD, even that >100 nmol/L


Bischoff-Ferrari et al. Am J Clin Nutr 84: 18-28, 2006

Bone Mineralization Defects and Vitamin D Deficiency

Histomorphometric Analysis of Iliac Crest Bone Biopsies and Circulating 25(OH)D in 675 autopsies


Mineralized bone is stained blue Unmineralized osteoid is stained red



No case of osteomalacia with 25(OH)D above 75 nmol/L

About <u>96.5% of osteomalacia</u> cases occurred at a 25(OH)D level of <u>less than</u> <u>50 nmol/L</u>

JBMR 2010;25:305-312

Serum 25(OH)D and BMD in Korea

The Korea Nation	al Health and Nu	trition Examin	ation Survey (KNHANES) 2	008-2009			
	Serum 25(OH)D ^a (nmol/L) in Women							
	<25 (n=119)	25~50 (n=2526)	50~75 (n=1432)	>75 (n=300)	P value ^b			
Lumbar spine	0·90±0·00	0.91 ± 0.00	0·92±0·00	$0.90{\pm}0.01$	0.079			
Femur trochanter	0.61±0.00***	0.62±0.00*	0.63±0.00	$0.62{\pm}0.01$	<0.001			
Femoral neck	0.69±0.00***	0·70±0·00 **	0·72±0·00	0.71 ± 0.01	<0.001			
Total hip	0·84±0·00***	0·86±0·00 **	0.87±0.00	0.86±0.01	<0.001			
		Serum 25(0	DH)Dª (nmol/L)	in Men				
	<25 (n=393)	25~50 (n=1693)	50~75 (n=1560)	>75 (n=525)	P value			
Lumbar spine	0·96±0·01	0·96±0·00	0·97±0·00	0·97±0·01	0.063			
Femur trochanter	0.67±0.02***	0.68±0.00***	0·70±0·00	0·70±0·00	<0.001			
Femoral neck	0·79±0·01***	0.80±0.00***	0.82 ± 0.00	$0.81{\pm}0.01$	<0.001			
Total hip	0·95±0·01 ***	0·96±0·00 ***	0.98±0.00	0.98 ± 0.01	<0.001			

Values are presented as mean \pm standard error.

^a Adjusted by age, BMI, regular walking, regular exercise, current smoking, and season of vitamin D determination

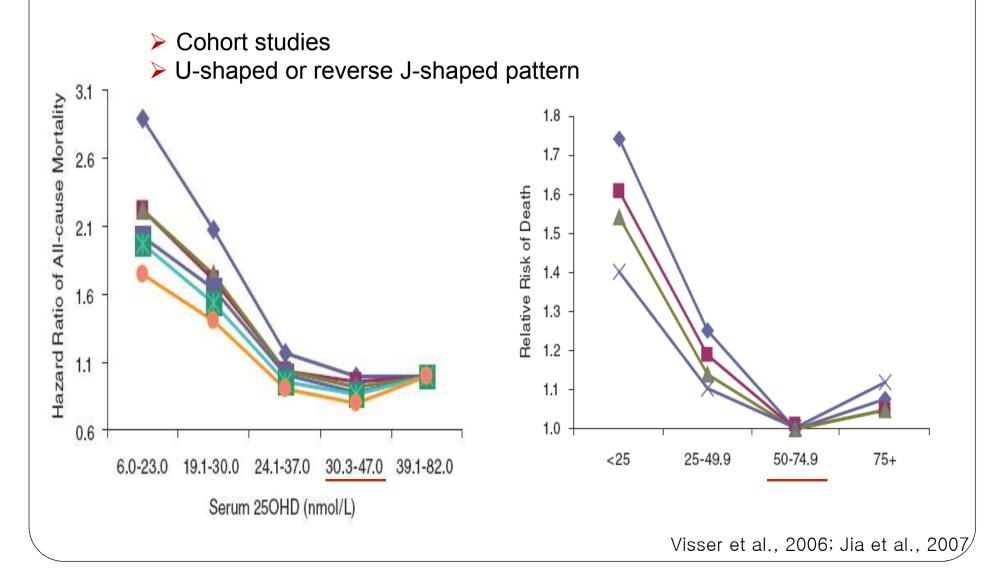
^b Overall results of covariance analysis.

* p < 0.05, ** p < 0.01, *** p < 0.001, as compared to the reference group (20~30 ng/mL).

Serum 25(OH)D and femur geometry

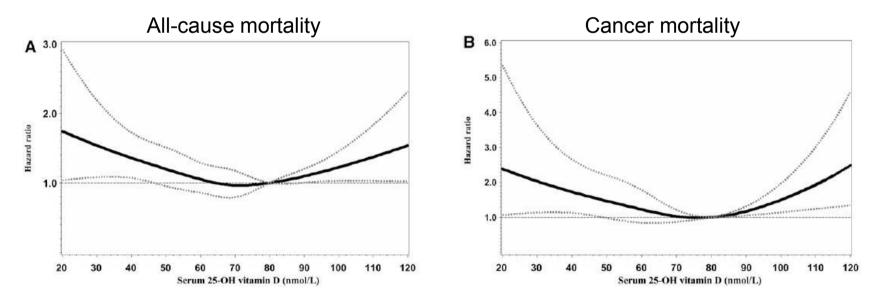
The Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2009								
	Serum 25(OH)D ^a (nmol/L) in Women							
	<25 (n=214)	25~50 (n=1995)	50~75 (n=1182)	>75 (n=270)	P value ^b			
FN cortical thickness (mm)	1.62±0.00**	$1.66 {\pm} 0.00$	1.69 ± 0.00	$1.67{\pm}0.00$	0.005			
FN CSA(cm2)	2·52±0·03***	$2 \cdot 62 \pm 0 \cdot 01$	2.65 ± 0.01	$2 \cdot 62 \pm 0 \cdot 03$	<0.001			
FN CSMI (cm4)	2·16±0·04 ***	2·30±0·01	$2 \cdot 34 \pm 0 \cdot 02$	$2 \cdot 32 \pm 0 \cdot 04$	<0.001			
FN buckling ratio	11·8 ±0·19 **	11.34 ± 0.06	11.20 ± 0.08	$11 \cdot 19 \pm 0 \cdot 18$	0.013			

	Serum 25(OH)D ^a (nmol/L) in Men						
	<25 (n=50)	25~50 (n=995)	50~75 (n=1088)	>75 (n=361)	P value ^b		
FN cortical thickness (mm)	1.76 ± 0.00	1.83 ± 0.00	1.86 ± 0.00	1.86 ± 0.00	0.020		
FN CSA(cm2)	3.18 ± 0.06	3·27±0·01*	3.34 ± 0.01	3·35±0·02	0.002		
FN CSMI (cm4)	$3.68 {\pm} 0.11$	3·76±0·02 **	3·87±0·02	3·93±0·04	<0.001		
FN buckling ratio	$12 \cdot 10 \pm 0 \cdot 29$	11.56 ± 0.07	11.33 ± 0.06	11.38 ± 0.10	0.020		


FN, femur neck; CSA, cross-sectional area; CSMI, cross-sectional moment of inertia

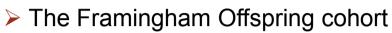
Unpublished data

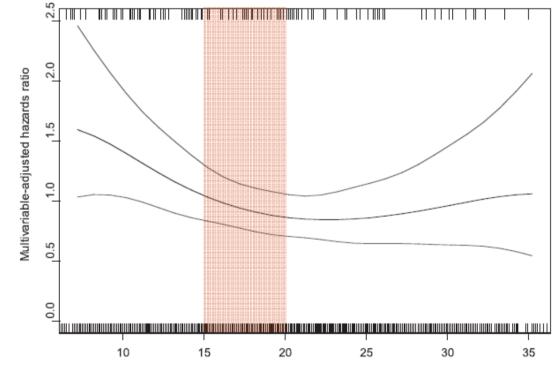
Association between serum 25(OH)D and PTH



Serum 25(OH)D level and all-cause mortality

Serum 25(OH)D level and all-cause mortality

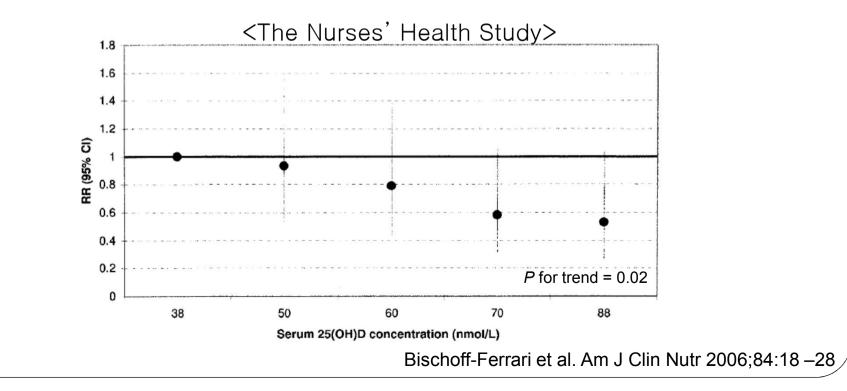

- The Uppsala Longitudinal Study of Adult Men
- A community-based cohort of elderly men (mean age: 71 yr, n= 1,194)
- Follow up: 12.7 yr
- U-shaped or reverse J-shaped pattern


→ An approximately 50% higher total mortality rate was observed among men in the lowest 10% (<46 nmol/L) and the highest 5% (>98 nmol/L) of plasma 25(OH)D concentrations compared with intermediate concentrations.

Am J Clin Nutr 2010;92:841-8/

Relation between baseline vitamin D status and incident cardiovascular events

> 1739 participants (mean age 59 years) without prior cardiovascular disease


25-OH D (ng/ml)

→ A nonlinear relation between 25(OH)D levels and cardiovascular risk, with increased risk for cardiovascular events at 25(OH)D levels below 37.5 to 50 nmol/L

Wang et al. Circulation. 2008;117:503-5

Vitamin D and colorectal cancer

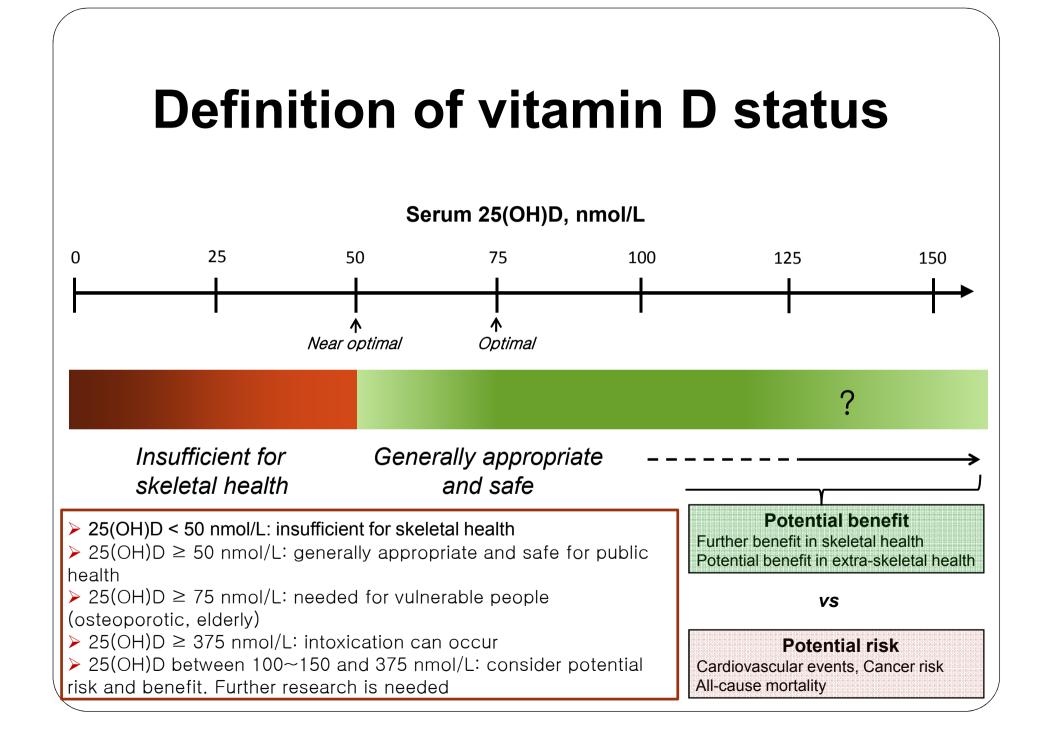
- Previous studies found a inverse associations of vitamin D intake with colon or rectal cancer
- A lower risk of colorectal cancer associated with higher 25(OH)D levels was reported

Vitamin D and pancreatic cancer

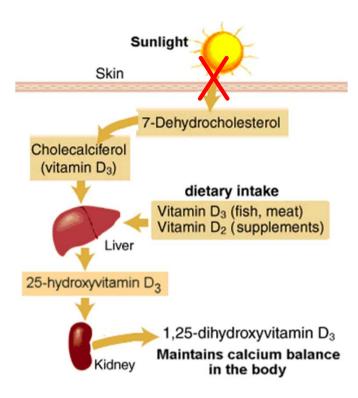
- The Cohort Consortium Vitamin D Pooling Project of Rarer Cancers
- Involving 10 cohorts that are members of the National Cancer Institute Cohort Consortium

→ An increased risk at very high levels (above 100 nmol/L) was noted

Am J Epidemiol 2010;172:4-9/


Vitamin D and prostate cancer

A longitudinal nested case-control study in the Nordic countries


Witzerie D Jawal		All countries		Norway		Finland		Sweden	
Vitamin D level (nmol/l)	Number of cases	OR (CI)	Number of cases	OR (CI)	Number of cases	OR (CI)	Number of cases	OR (CI)	
≤ 19	19	1.5 (0.8-2.7)	5	0.9 (0.3-2.8)	13	2.4 (1.1–5.1)	1	1.3 (0.1-12.5)	
20-39	169	1.3 (0.98-1.6)	89	1.2 (0.9-1.7)	68	1.9 (1.1-3.1)	12	0.7(0.3-1.4)	
40-59 (ref.)	229	1	155	1	29	1	45	1	
60-79	138	1.2 (0.9-1.5)	98	1.2 (0.8-1.7)	18	1.4 (0.7-2.8)	22	1.0 (0.5-1.8)	
≥ 80	67	1.7 (1.1–2.4)	57	1.8 (1.1-2.8)	4	1.2 (0.4-3.8)	6	1.5 (0.5-4.4)	

 \rightarrow Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk

Int J Cancer 108, 104–108 (2004)

Vitamin D status in Korea and other countries

Demographic Differences and Trends of Vitamin D Insufficiency in the US Population, 1988-2004

Adit A. Ginde, MD, MPH; Mark C. Liu, MD; Carlos A. Camargo Jr, MD, DrPH

		NHANES III (1988-1994)) a		NHANES 2001-2004ª	
	No. of Participants	Estimated US Population, Millions	% of Participants (95% Cl) ^b	No. of Participants	Estimated US Population, Millions	% of Participants (95% CI) ^b
Total	18 883	195	100	13 369	221	100
Age, y						
12-19	2937	26	13 (13-14)	4224	29	13 (12-14)
20-39	6455	77	40 (38-42)	3249	75	34 (32-36)
40-59	4293	54	28 (27-29)	2726	74	34 (32-35)
≥60	5198	37	19 (17-21)	3170	41	19 (18-20)
Sex						
Male	8840	94	48 (48-49)	6512	107	49 (48-49)
Female	10 043	101	52 (51-52)	6856	114	51 (51-52)
Race/ethnicity						
NH white	7428	146	75 (72-78)	6131	158	72 (67-76)
NH black	5362	22	11 (10-13)	3149	25	11 (9-14)
Mexican American	5305	11	6 (5-7)	3211	18	8 (6-11)
Other	788	16	8 (7-10)	878	20	9 (7-12)
25(OH)D level, ng/mL						
<10	684	4	2 (2-2)	1321	14	6 (5-8)
10 to <30	12 302	104	53 (51-55)	9843	157	71 (68-73)
≥30	5897	87	45 (43-47)	2205	50	23 (20-26)

Ginde et al. Arch Intern Med 169:626, 2009

Demographic Differences and Trends of Vitamin D Insufficiency in the US Population, 1988-2004

Adit A. Ginde, MD, MPH; Mark C. Liu, MD; Carlos A. Camargo Jr, MD, DrPH

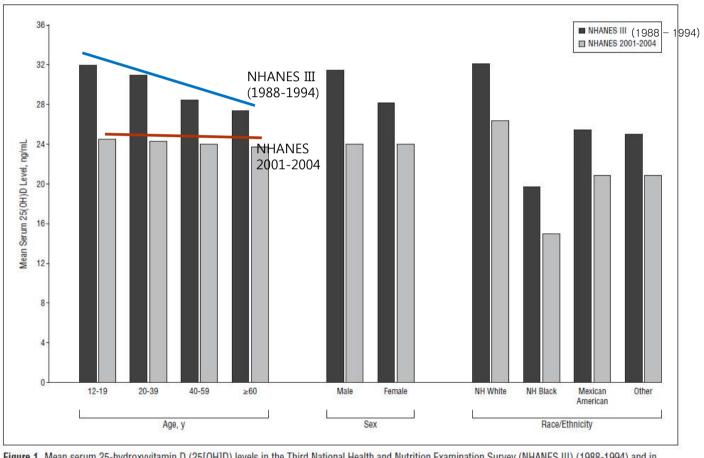
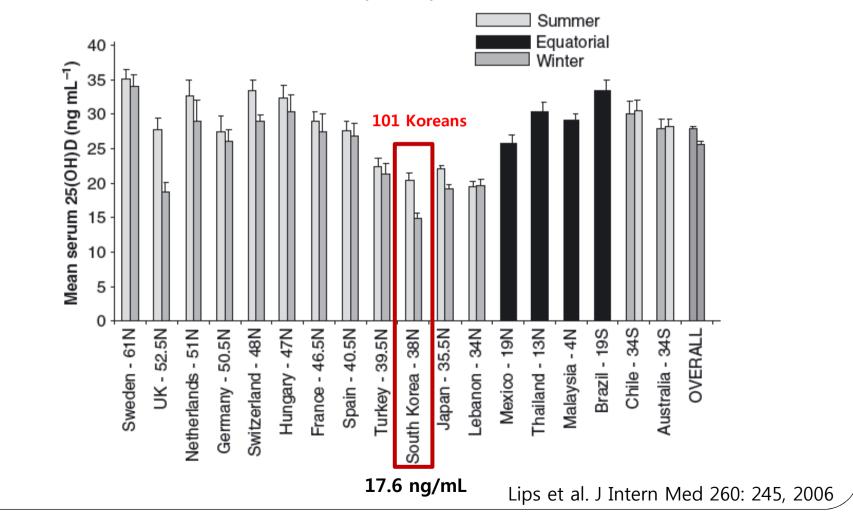
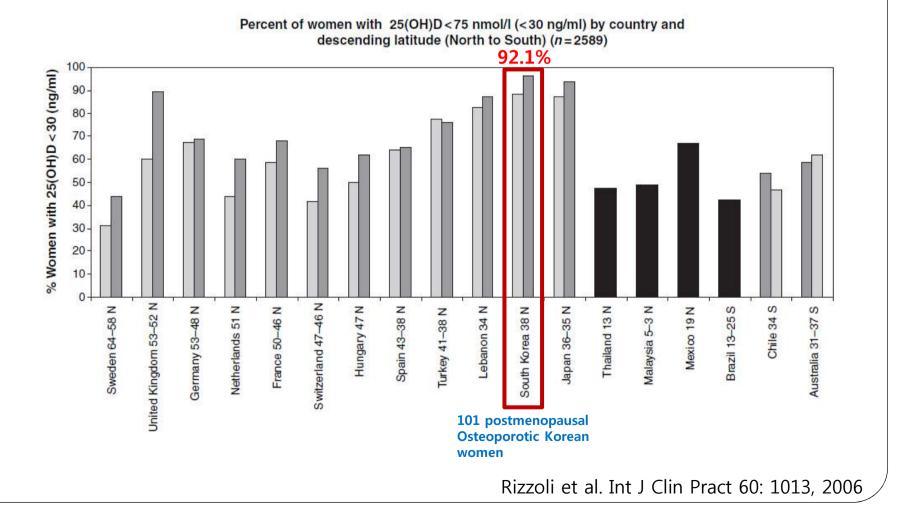



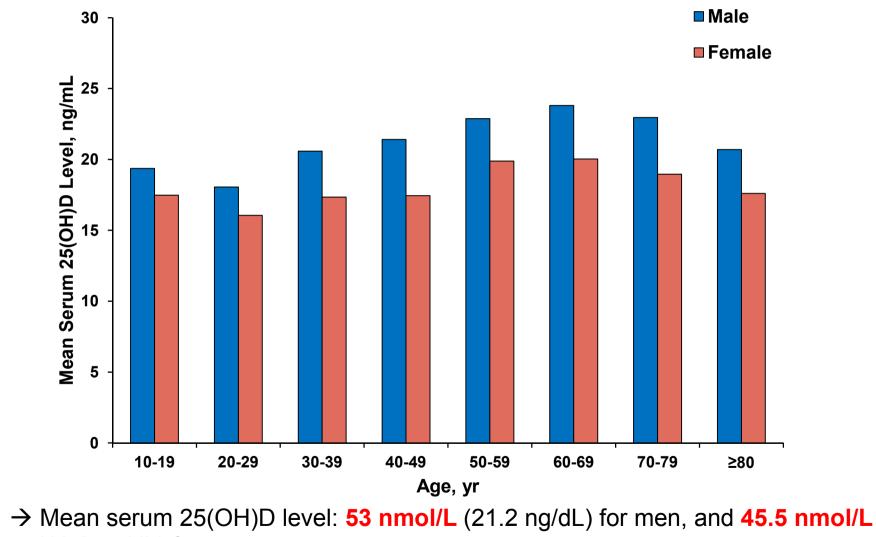
Figure 1. Mean serum 25-hydroxyvitamin D (25[OH]D) levels in the Third National Health and Nutrition Examination Survey (NHANES III) (1988-1994) and in NHANES 2001-2004, stratified by demographic characteristics. NH indicates non-Hispanic. To convert 25(OH)D levels to nanomoles per liter, multiply by 2.496.

Ginde et al. Arch Intern Med 169:626, 2009

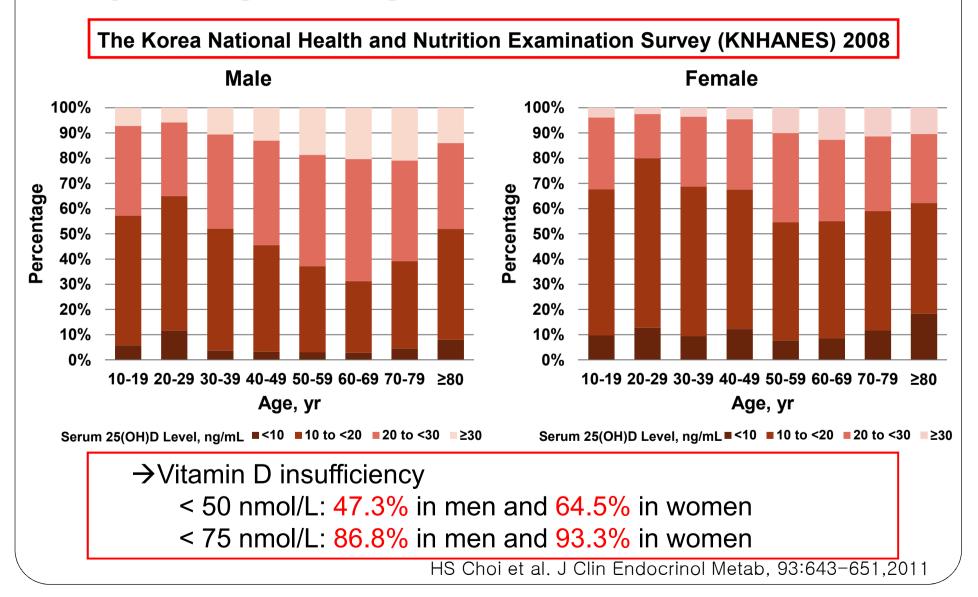

Vitamin D status in Korea

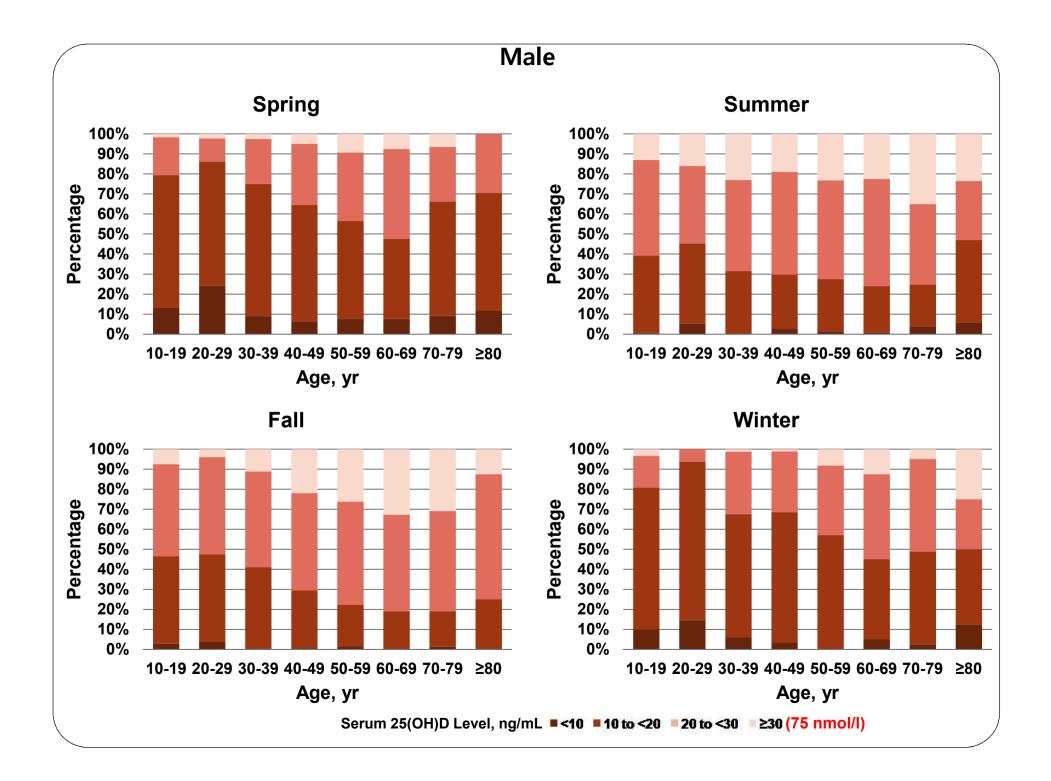
Mean 25(OH)D (ng/mL) by country and descending latitude (North to South) (n=2589) postmenopausal osteoporotic women

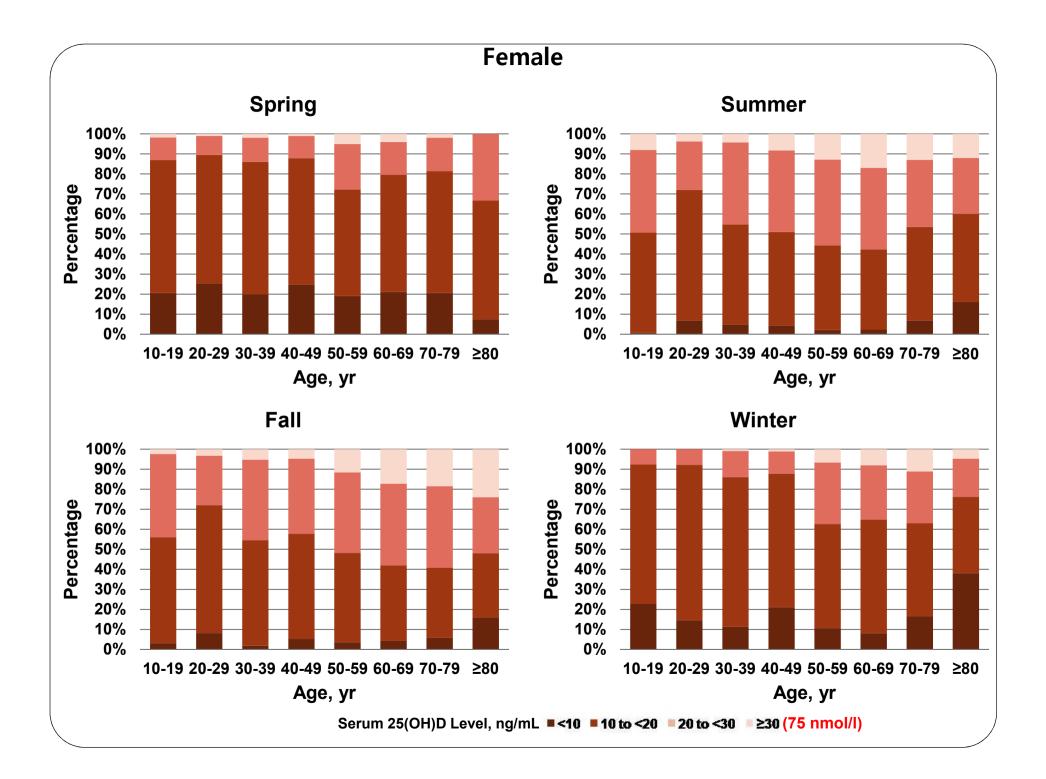
Vitamin D status in Korea


25(OH)D < 75nmol/l

The Fourth Korean National Health and Nutrition Examination Survey


- The KNHANES has been conducted periodically since 1998 to assess the health and nutritional status of the civilian, non- institutionalized population of the Korea
- A cross-sectional and nationally representative survey conducted by the Division of Chronic Disease Surveillance, Korea Centers for Disease Control and Prevention
- **Duration:** Feburary, 2008 Decemter, 2008
- Participants: Total 6,925 (Male- 3,047, Female- 3,878)
- **Age:** ≥10 yr
- 25-hydroxyvitamin D assay: RIA (DiaSorin)


Age-related change of serum 25(OH)D levels

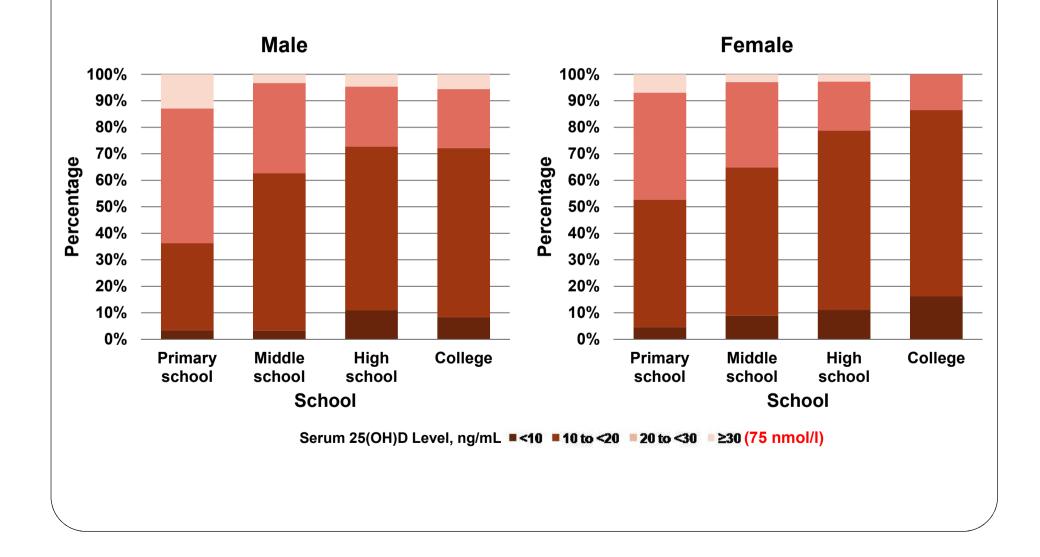


(18.2 ng/dL) for women

Prevalence of vitamin D insufficiency by 10-year age categories

Prevalence of vitamin D insufficiency by occupation in adults aged 20 yrs or older

The Korea National Health and Nutrition Examination Survey (KNHANES) 2008 Male **Female** 100% 100% 90% 90% 80% 80% 70% 70% Percentage Percentage 60% 60% 50% 50% 40% 40% 30% 30% 20% 20% 10% 10% 0% 0% В С Ε F G В С D Ε F G Α D Α Occupation Occupation Serum 25(OH)D Level, ng/mL ■<10 ■10 to 20 ■20 to 30 ■≥30 Serum 25(OH)D Level, ng/mL ■<10 ■10 to 20 ■20 to 30 ≥30 Sales, and service A. Agriculture, forestry, and fishery D. Ε. Manual labor Administration, clerical work, and specialists B.

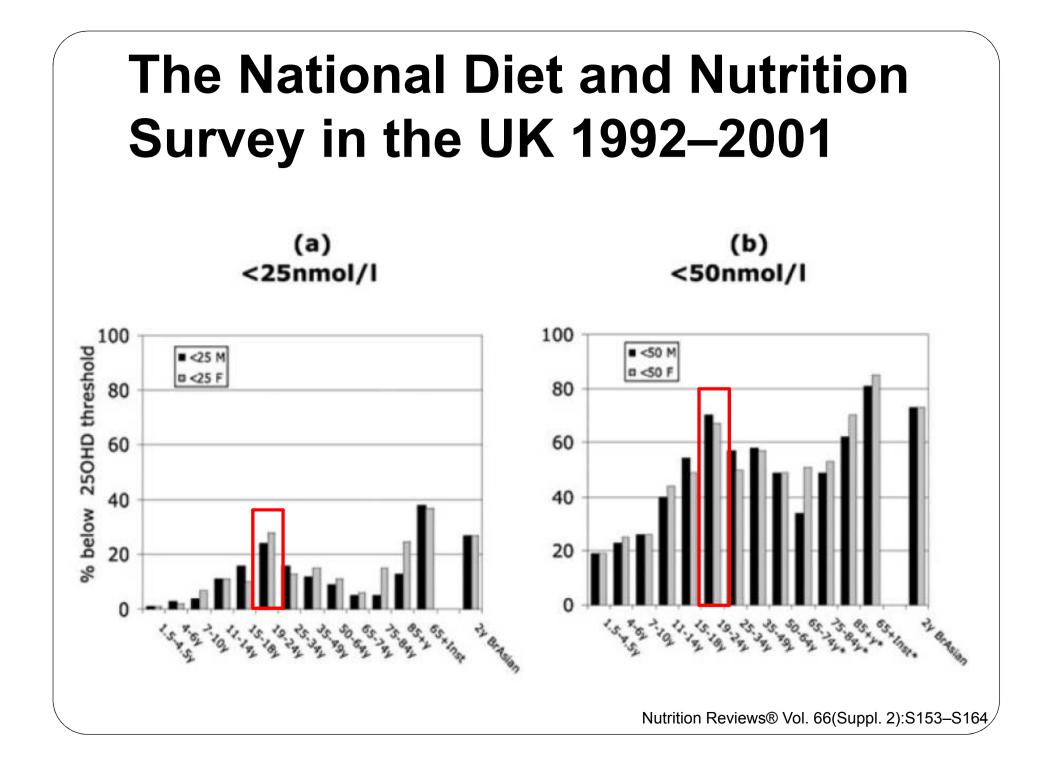

- C. Engineering, assembling, and technical work
- G. N/A

Students

F.

HS Choi et al. J Clin Endocrinol Metab, 93:643-651,2011

Prevalence of vitamin D insufficiency by school in participants younger than 20 yrs


Mean 25(OH)D level and the prevalence of vitamin D insufficiency based on nationwide surveys in Korea, the US, and Canada

Country	Survey	Sample size	Age	Assay	Mean 25(OH)D	25(OH)	D (nmol/l)
		(n)	(yr)		(nmol/l)	<50	<75
Korea	KNHANES 2008	6,925 (M:3,047, F:3,878)	10-93	RIA (DiaSorin)	48.7 (M:52.9, F:45.4)	56.9% (M:47.3%, F:64.5%)	90.5% (M:86.8%, F:93.3%)
US	NHANES 1988-1994	18,641 (M:8,759, F:9,882)	≥12	RIA (DiaSorin)	60.7	29% (M:22%, F:35%)	69% (M:64%, F:74%)
US	NHANES 2001-2006	23,424 (M:11,443, F:11,981)	≥2	RIA (DiaSorin)	55.2	32% (M:29%, F:34%)	76% (M:76%, F:76%)
Canada	CHMS 2007-2009	5,306 (M:2,566, F:2,740)	6-79	CLIA- LIAISON (DiaSorin)	67.7 (M:65.7, F:69.7)	-	64.6% (M:67.0%, F:62.2%)

HS Choi, Endocrinol Metab 2013;28:12-16

Higher rate of vitamin D insufficiency in younger generation

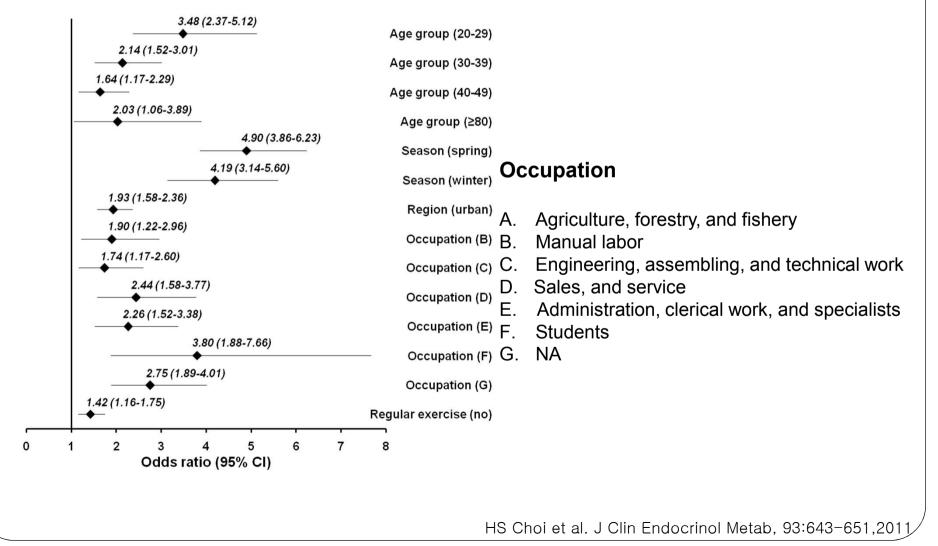
Is it a unique finding in Korea or recent worldwide trend in the modern epidemic of vitamin D insufficiency ?

Canadian Health Measures Survey 2007-2009

	Mean					
Age group	Mean	95% confidence interval				
and sex	nmol/L	from	to			
Total 6 to 79 years	67.7	65.3	70.1			
Male	65.7*	62.5	68.9			
Female	69.7	67.8	71.7			
6 to 11 years	75.0°	70.3	79.7			
Male	76.8 ^{bcde}	72.9	80.7			
Female	73.1	67.0	79.1			
12 to 19 years	68.1	63.8	72.4			
Male	65.6*ª	60.8	70.4			
Female	70.8	65.8	75.9			
20 to 39 years	65.0 ª e	61.0	69.0			
Male	60.7*ª e	55.3	66.1			
Female	69.5	65.8	73.2			
40 to 59 years	66.5 ª e	63.8	69.2			
Male	66.0ª	62.1	69.8			
Female	67.1e	65.0	69.2			
60 to 79 years	72.0° ^d	69.4	74.5			
Male	70.5° ^c	67.5	73.6			
Female	73.3 ^d	70.3	76.4			

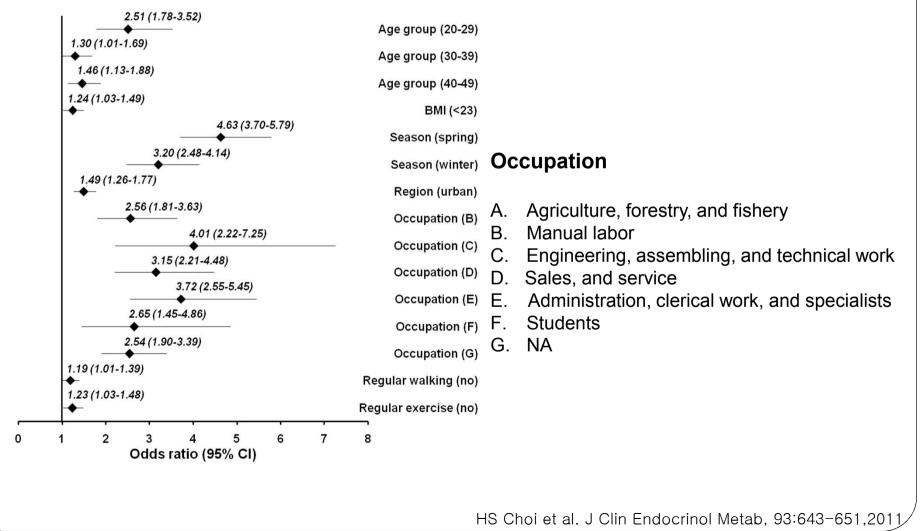
Health Reports, Vol. 21, no. 1, March 2010 • Statistics Canada, Catalogue no. 82-003-XPE

Determinants of vitamin D status


Risk factors for vitamin D insufficiency

- Older age*
- Female sex
- Lower latitude
- Winter season
- Darker skin pigmentation
- Factors that determine sunlight exposure: clothing and cultural practises, dietary habits, national policies of vitamin D fortification

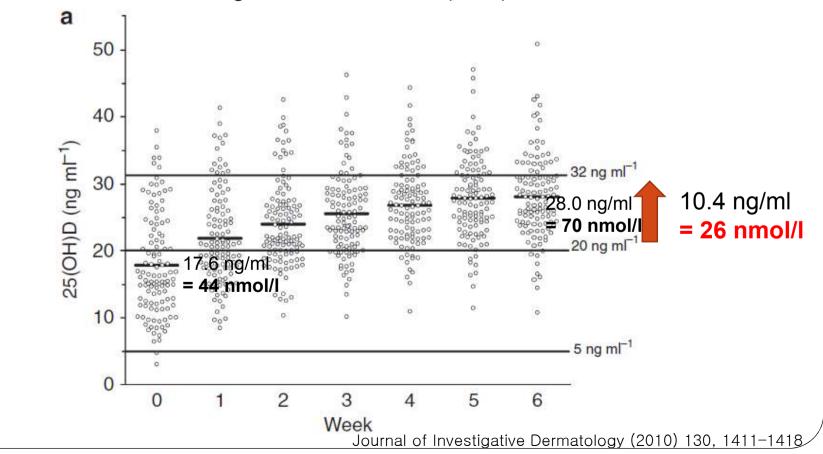
*The cutaneous production of vitamin D3 declines with age


Independent predictors for vitamin D insufficiency in Koreans

Male

Independent predictors for vitamin D insufficiency in Koreans

Female


Independent predictors for vitamin D insufficiency in Koreans

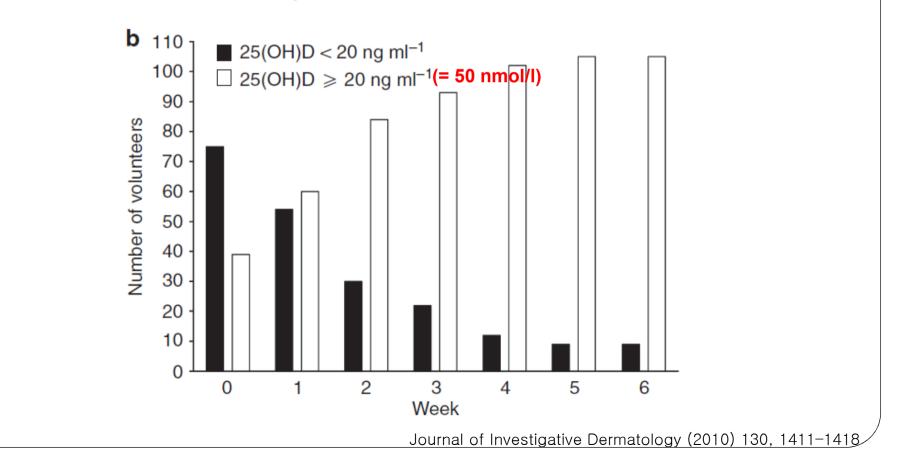
- After adjusting for confounders, young age groups were independent predictors for vitamin D insufficiency in our study
- Although the cause of this finding is not clear, it might be due to <u>other behavioral factors</u> of young age groups (indoor lifestyle, sunscreen use, or dietary habits)

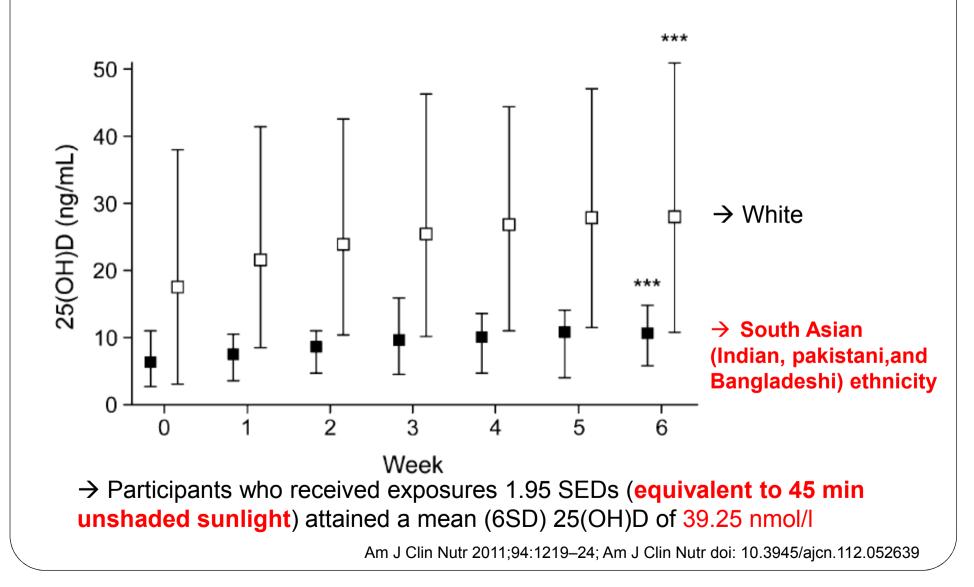
Strategies to improve vitamin D status

- Whole body exposure to 10~15 minutes of midday sun in summer [1 MED (minimal erythemal dose)], or the amount of sun exposure which produces a faint redness of skin
 - → 15,000 ~ 20,000 IU of vitamin D
- Exposure of hand, face and arms (15% of body surface) to around 1/3 MED
 → 1000 IU of vitamin D
- Holick's rule: ¼ of body to ¼ MED of sunlight
 → 1000 IU of vitamin D

- 120 white Caucasians, aged 20–60 years, from UK (53.51N)
- A simulated summer's sunlight exposures, specifically 1.3 SED (= summer's 13 minutes sunlight exposures), three times weekly for 6 weeks, while wearing T-shirt and shorts (35%)

- 120 white Caucasians, aged 20–60 years, from UK (53.51N)
- A simulated summer's sunlight exposures, specifically 1.3 SED (= summer's 13 minutes sunlight exposures), three times weekly for 6 weeks, while wearing T-shirt and shorts (35%)



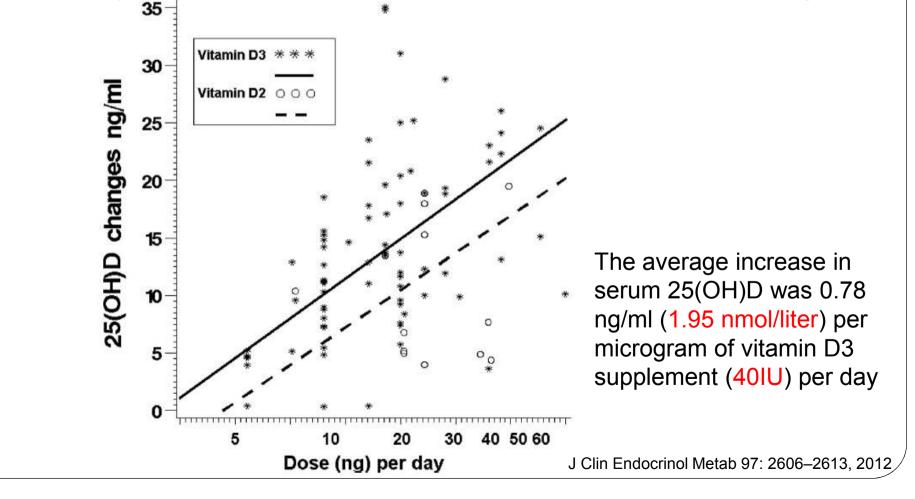

Table 4. Estimated time taken to acquire the same vitamin D-weighted dose as used in this study, at different North American and European locations at local noon on June 21 and December 21

City	Latitude ¹ (deg, min)	Summer ² (minutes)	Winter ² (minutes) 39	
New Orleans	29, 57	9		
San Diego	32, 42	9	49	
Athens	37, 58	9	—	
Washington	38, 53	9		
Boston	42, 21	10	—	
Vancouver	<mark>49</mark> , 13	11		
Brussels	50, 52	12	—	
Manchester	53, 30	13		
Oslo	58, 57	16		

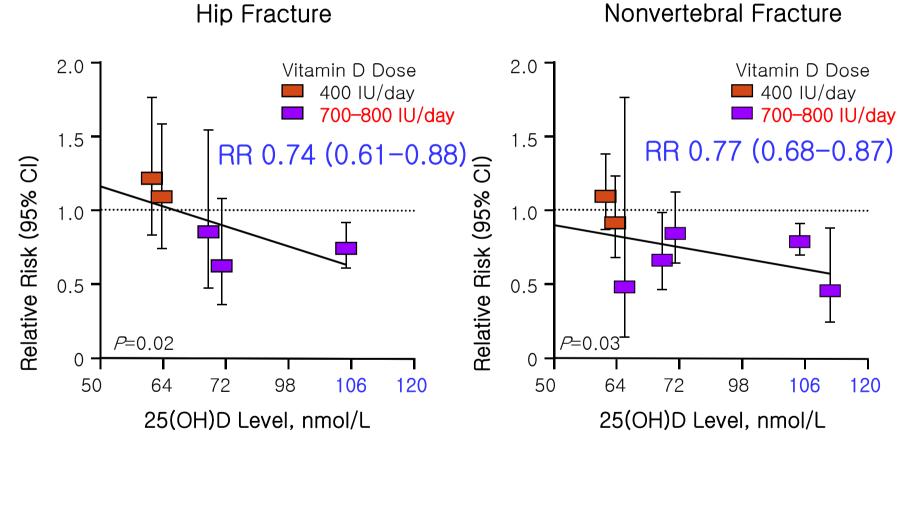
¹Latitude is given in degrees and minutes.

²Times are given to the nearest minute; times >1 h are not shown.

Journal of Investigative Dermatology (2010) 130, 1411-1418

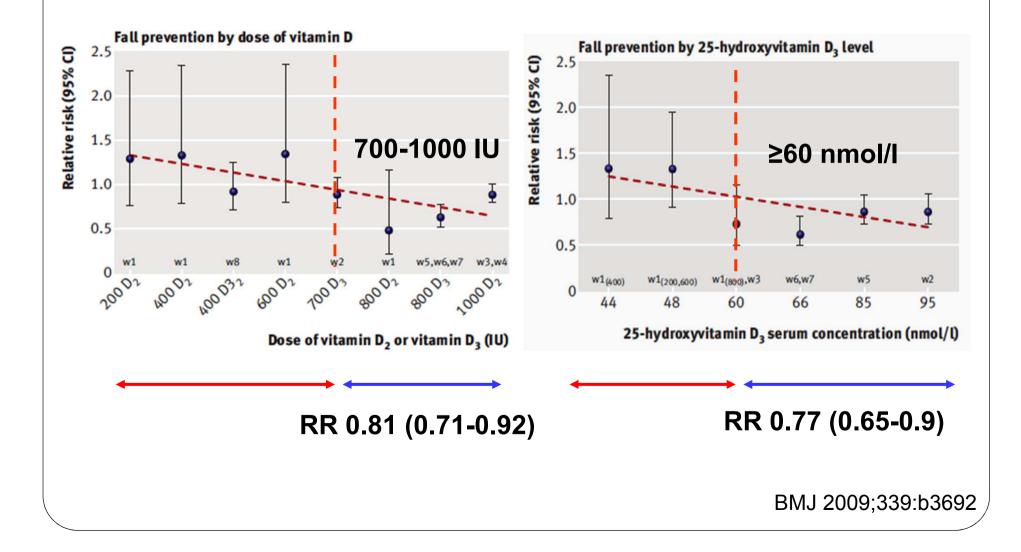

Dietary sources

• Fatty fish species

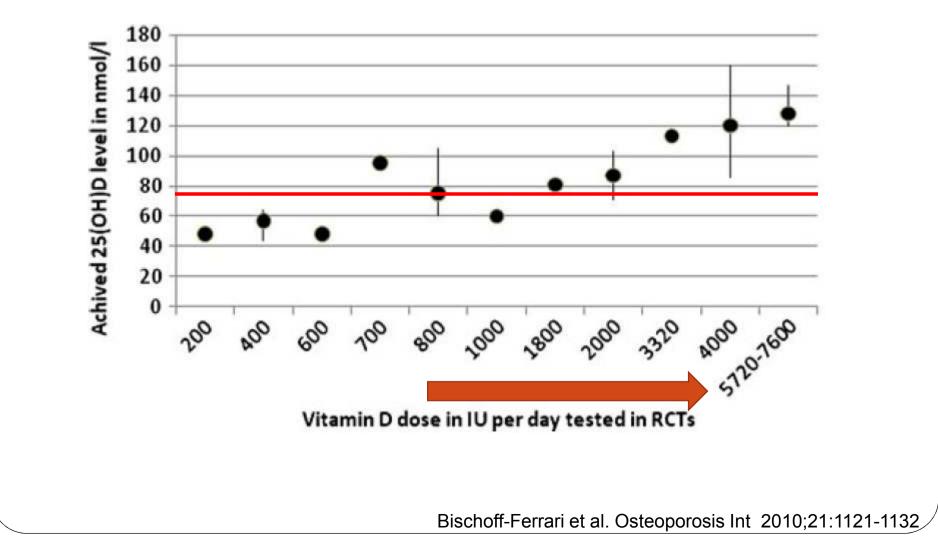

- Catfish, 85 g provides 425 IU (5 IU/g)
- Salmon, cooked, 100 g provides 360 IU (3.6 IU/g)
- Mackerel, cooked, 100 g, 345 IU (3.45 IU/g)
- Sardines, canned in oil, drained, 50 g, 250 IU (5 IU/g)
- Tuna, canned in oil, 100 g, 235 IU (2.35 IU/g)
- Eel, cooked, 100 g, 200 IU (2.00 IU/g)
- A whole egg provides 20 IU (0.33 IU/g)
- Beef liver, cooked, 100 g provides 15 IU (0.15 IU/g)
- Fish liver oils, such as cod liver oil, 15 ml provides 1360 IU (90.6 IU/ml)

Vitamin D Supplementation on Serum 25-Hydroxyvitamin D

- <u>Meta-analysis</u> of changes in circulating 25-hydroxyvitamin D level associated with vitamin D supplementation in Caucasian subjects over 50 yr old
- Seventy-six trials published from 1984 to March 2011 included 6207 subjects



Fracture risk correlated with achieved 25(OH)D levels in RCTs



Bischoff-Ferrari et al. JAMA. 2005; 293:2257-226

Fall prevention by dose and achieved 25(OH)D concentrations

Dose of vitamin D and achieved 25(OH)D levels based on RCTs with a duration of at least 4 weeks

Dietary Reference Intakes for Calcium and Vitamin D

NOVEMBER 2010

INSTITUTE OF MEDICINE

OF THE NATIONAL ACADEMIES

		Calcium		Vitamin D			
Life Stage Group	Estimated Average Requirement (mg/day)	Recommended Dietary Allowance (mg/day)	Upper Level Intake (mg/day)	Estimated Average Requirement (IU/day)	Recommended Dietary Allowance (IU/day)	Upper Leve Intake (IU/day)	
Infants 0 to 6 months	*	*	1,000	**	**	1,000	
Infants 6 to 12 months		*	1,500	**	**	1,500	
1-3 years old	500	700	2,500	400	600	2,500	
4-8 years old	800	1,000	2,500	400	600	3,000	
9-13 years old	1,100	1,300	3,000	400	600	4,000	
14-18 years old	1,100	1,300	3,000	400	600	4,000	
19-30 years old	800	1,000	2,500	400	600	4,000	
31–50 years old	800	1,000	2,500	400	600	4,000	
51-70 year old males	800	1,000	2,000	400	600	4,000	
51-70 year old females	1,000	1,200	2,000	400	600	4,000	
>70 years old	1,000	1,200	2,000	400	800	4,000	
14-18 years old, pregnant/lactating	1,100	1,300	3,000	400	600	4,000	
19–50 years old, pregnant/lactating	800	1,000	2,500	400	600	4,000	

NOF recommendations for vitamin D

- The National Osteoporosis Foundation (NOF) recommends that
 - Adults under age 50 get <u>400 800 IU</u> of vitamin D every day
 - Adults age 50 and older get <u>800 1,000 IU</u> of vitamin D every day
 - Some people may need more vitamin D

한국인 영양섭취기준 2010- 비타민 D

		남	자		여자			
연령	평균 필요량	권장 섭취량	충분 섭취량	상한 섭취량	평균 필요량	권장 섭취량	충분 섭취량	상한 섭취량
0~5개월	-	-	200	1,000	-	-	200	1,000
6~11개월	-	-	200	1,000	-	-	200	1,000
1~2세	-	-	200	2,400	-	-	200	2,400
3~5세	-	-	200	2,400	-	-	200	2,400
6~8세	-	-	200	2,400	-	-	200	2,400
9~11세	-	-	200	2,400	-	-	200	2,400
12~14세	-	-	200	2,400	-	-	200	2,400
15~18세	-	-	200	2,400	-	-	200	2,400
19~29세	-	-	200	2,400	-	-	200	2,400
30~49세	-	-	200	2,400	-	-	200	2,400
50~64세	-	-	400	2,400	-	-	400	2,400
65~74세	-	-	400	2,400	_	-	400	2,400
75세 이상	-	-	400	2,400	-	-	400	2,400
임신부	-	-	-	-	-	-	-	-
수유부	-	-	-	-	-	-	-	-

한국영양학회, 한국인 영양섭취기준 개정판, 2010/

Conclusions

- The prevalence of vitamin D insufficiency, defined as a serum 25-hydroxyvitamin D [25(OH)D] level below 50 nmol/L, was 47.3% in males and 64.5% in females
- Only 13.2% of males and 6.7% of females had a serum 25(OH)D level of greater than 75 nmol/L
- In Korea, vitamin D insufficiency was more prevalent in young adults than in elderly people, likely due to the indoor lifestyle of younger people

Conclusions

- Compared with the United States and Canada, Korea has a lower mean 25(OH)D level and a higher prevalence of vitamin D insufficiency
- To improve the vitamin D status of the Korean population, more aggressive policies on food fortification and vitamin D supplementation are needed